Cover Image

Phase equilibria in the YFeO3 – YСoO3 system in air

A. V. Bryuzgina, A. S. Urusova, I. L. Ivanov, V. A. Cherepanov

Abstract


YFe1-xСоxO3 solid solutions were prepared by glycerol-nitrate technique. The homogeneity range of solid solutions was studied within the temperature range 1173 – 1573 K. A continues series of solid solution below the decomposition temperature of YСоO3, which was shown to be equal to 1266 ± 6 K, begins to narrow at higher temperatures and becomes equal to 0 ≤ x ≤ 0.1 at 1573 K. The phase diagram of the YFeO3 – YСoO3 system in the “T – composition” coordinates was divided into three fields. Similar to the parent ternary oxides, all single-phase YFe1-xСоxO3 solid solutions possess orthorhombically distorted perovskite structure (Pnma space group). Unusual behavior of orthorhombic distortions in YFe1-xСоxO3 with temperature was explained by probable changes in spin state of Co3+ ions.

Keywords


solid solutions; perovskite crystal structure; phase diagram

Full Text:

PDF

References


Rosales-González O, Sánchez-De Jesús F, Cortés-Escobedo CA, Bolarín-Miró AM. Crystal structure and multiferroic behavior of perovskite YFeO3. Ceram Int. 2018; 4:15298-303. doi:10.1016/j.ceramint.2018.05.175

Cheng ZX, Shen H, Xu JY, Liu P, Zhang SJ. Magnetocapacitance effect in nonmultiferroic YFeO3 single crystal. J Appl Phys. 2012;111:034103-1–5. doi:10.1063/1.3681294

Zhang Y, Yang J, Xu J, Gao Q, Hong Z. Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activity. Mater Lett. 2012;81:1–4. doi:10.1016/j.matlet.2012.04.080

Maiti R, Basu S, Chakravorty D. Synthesis of nanocrystalline YFeO3 and its magnetic properties. J Magn Magn Mater. 2009;321:3274–7. doi:10.1016/j.jmmm.2009.05.061

Lin X, Jiang J, Jin Z, Wang D, Tian Z, Han J, Cheng Z, Ma G. Terahertz probes of magnetic field induced spin reorientation in YFeO3 single crystal. Appl Phys Lett. 2015;106:092403-1–4. doi:10.1063/1.4913998

Addabbo T, Bertocci F, Fort A, Mugnaini M, Shahin L, Vignoli V, Spinicci R, Rocchi S, Gregorkiewitz M. An artificial olfactory system (AOS) for detection of highly toxic gases in air based on YCoO3. Procedia Eng. 2014;87:1095–8. doi:10.1016/j.proeng.2014.11.355

Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Maris G, Palstra TTM. Structural anomalies associated with the electronic and spin transitions in LnCoO3. Eur Phys J B. 2005:47:213–20. doi:10.1140/epjb/e2005-00320-3

Zhu Z, Guo J, Jia Y, Hu X. Electronic structure and evolution of spin state in YCoO3. Phys B. 2010;405:359–62. doi:10.1016/j.physb.2009.08.097

Knizek K, Jirak Z, Hejtmanek J, Veverka M, Marysko M, Hauback BC, Fjellvag H. Structure and physical properties of YCoO3–δ at temperatures up to 1000 K. Phys Rev B: Condens Matter Mater Phys. 2006;73:214443. doi:10.1103/PhysRevB.73.214443

Krén E, Pardavi M, Pokó Z, Sváb E, Zsoldos É. Study of the Spin Reorientation in Co- and Cr-Substituted YFeO3. AIP Conf Proc 10. 1973;10:1603–6. doi:10.1063/1.2946858

Pomiro F, Gil DM, Nassif V, Paesano AJr, Gómez MI, Guimpel J, Sánchez RD, Carbonio RE. Weak ferromagnetism and superparamagnetic clusters coexistence in YFe1-xCoxO3 (0

Wei Y, Gui H, Zhao Z, Li J, Liu Y, Xin S, Li X, Xie W. Structure and magnetic properties of the perovskite YCo0.5Fe0.5O3. AIP Adv. 2014;4:127134. doi:10.1063/1.4904811

Imitrovska-Lazova S, Aleksovska S, Tzvetkov P. Synthesis and crystal structure determination of YCo1−xFexO3 (x = 0, 0.33, 0.5, 0.67 and 1) perovskites. J Chem Sci. 2015;127(7):1173–81. doi:10.1007/s12039-015-0878-y

Geller S, Wood EA. Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3. Acta Cryst. 1956;9:563-8. doi:10.1107/S0365110X56001571

Buassi-Monroy OS, Luhrs CC, Chávez-Chávez A, Michel CR. Synthesis of crystalline YCoO3 perovskite via sol–gel method. Mater Lett. 2004;58:716–8. doi:10.1016/j.matlet.2003.07.001

Feng G, Xue Y, Shen H, Feng S, Li L, Zhou J, Yang H, Xu D. Sol–gel synthesis, solid sintering, and thermal stability of single-phase YCoO3. Phys Status Solidi A. 2012;209(7):1219–24. doi:10.1002/pssa.201127710

Kimizuka N, Katsura T, Standard free energy of formation of YFeO, Y3Fe5O12, and a new compound YFeO in the Fe-FeO-Y2O3 system at 1200°C. J Solid State Chem. 1975;13:176-81. doi:10.1016/0022-4596(75)90116-4

Kitayama K, Sakaguchi M, Takahara Y, Endo H, Ueki H. Phase equilibrium in the system Y–Fe–O at 1100°C. J Solid State Chem. 2004;177:1933–8. doi:10.1016/j.jssc.2003.12.040

Piekarczyk W, Weppner W, Rabenau A. Dissociation pressure and Gibbs energy of formation of Y3Fe5O12 and YFeO3. Mater Res Bull. 1978;13:1077-83. doi:10.1016/0025-5408(78)90174-5

Tretyakov YuD, Kaul AR, Portnoy VK. Formation of rare earth and yttrium orthferrites: a thermodynamic study. High Temp Sci. 1977;9:61-70.

Jacob KT, Rajitha G. Nonstoichiometry, defects and thermodynamic properties of YFeO3, YFe2O4 and Y3Fe5O12. Solid State Ionics. 2012;224:32-40. doi:10.1016/j.ssi.2012.07.003

Masse DP, MUAN A. Phase Equilibria at Liquidus Temperatures in the System Cobalt Oxide-Iron Oxide-Silica in Air. J Am Ceram Soc. 1965;48:466-9. doi:10.1111/j.1151-2916.1965.tb14800.x

Zhang WW, Chen M. Thermodynamic modeling of the Co–Fe–O system. CALPHAD. 2013;41:76-88. doi:10.1016/j.calphad.2013.02.002

Jung I-H, Decterov SA, Pelton AD, Kim H-M, Kang Y-B. Thermodynamic evaluation and modeling of the Fe–Co–O system. Acta Mater. 2004;52:507–519. doi:10.1016/j.actamat.2003.09.034

Jadhao VG, Singru RM, Rama Rao G, Bahadur D, Rao CNR. Effect of the Rare Earth Ion on the Spin State Equilibria in Perovskite Rare Earth Metal Cobaltates. Yttrium trioxocobaltate(III) and erbium trioxocobaltate(III). J Chem Soc, Faraday Trans 2. 1975;71:1885–93. doi:10.1039/F29757101885

Ahmad I, Akhtar MJ, Siddique M, Iqbal M, Hasan MM. Origin of anomalous octahedral distortions and collapse of magnetic ordering in Nd1-xSrxFeO3 (0

Dasgupta N, Krishnamoorthy R, Jacob KT. Crystal structure and thermal and electrical properties of the perovskite solid solution Nd1-xSrxFeO3-d (0

Raccach PM, Goodenough JB. A localized-electron collective-electron transition in the system (La, Sr)CoO3. J Appl Phys. 1968;39(2):1209-10. doi:10.1063/1.1656227

Yan J-Q, Zhou J-S, Goodenough JB. Bond-length fluctuations and the spin-state transition in LCoO3 (L=La, Pr, and Nd). Phys Rev B. 2004;69:134409-1–6. doi:10.1103/PhysRevB.69.134409

Zhou J-S, Yan J-Q, Goodenough JB. Bulk modulus anomaly in RCoO3 (R=La, Pr, and Nd). Phys. Rev. B. 2005;71:220103-1–4. doi:10.1103/PhysRevB.71.220103

Cavalcante FHM, Carbonari AW, Malavasi RFL, Cabrera-Pasca GA, Saxena RN, Mestnik-Filho J. Investigation of spin transition in GdCoO3 by measuring the electric field gradient at Co sites. J Magn Magn Mater. 2008;320:e32–5. doi:10.1016/j.jmmm.2008.02.033

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr, Sect A. 1976; 32(5):751–67. doi:10.1107/s0567739476001551




DOI: https://doi.org/10.15826/chimtech.2021.8.1.08

Copyright (c) 2021 A.V. Bryuzgina, A.S. Urusova, I.L. Ivanov, V.A. Cherepanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International