Cover Image

Spin–state transition in the layered barium cobaltite derivatives and their thermoelectric properties

A. I. Klyndyuk, E. A. Chizhova, S. V. Shevchenko

Abstract


Ba1.9Me0.1Co9O14 (Me = Ba, Sr, Ca) (BCO) layered cobaltites were prepared by means of solid-state reactions method. Crystal structure, microstructure, thermal expansion, electrical conductivity, and thermo-EMF for the obtained oxides were studied; the values of their linear thermal expansion coefficient, activation energy of electrical transport, and power factor values were calculated. It was found that BCO are p-type semiconductors, in which the spin-state transition occurs within 460-700 K temperature interval due to change in spin state of cobalt ions, which accompanied the sharp increase in electrical conductivity, activation energy of electrical conductivity, and linear thermal expansion coefficient, while thermo-EMF coefficient decreased. Partial substitution of barium by strontium or calcium in BCO leads to the increase in spin-state transition temperature and electrical conductivity of the samples, and, at the same time, thermo-EMF coefficient; consequently, their power factor values decrease.

Keywords


layered barium cobaltite; spin–state transition; thermal expansion; electrical conductivity; thermo-EMF; power factor

Full Text:

PDF

References


Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B. 1997;56(20):R12685–7. doi:10.1103/PhysRevB.56.R12685

Krasutskaya NS, Klyndyuk Aim Evseeva LE, Tanaeva SA. Synthesis and Properties of NaxCoO2 (x = 0.55, 0.89) Oxide Thermoelectrics. Inorg Mater. 2016;52(4):393–9. doi:10.1134/S0020168516030079

Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek. J. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance:Ca3Co4O9. Phys Rev B. 2000;62(1):166–75. doi:10.1103/PhysRevB.62.166

Sotelo A, Rasekh Sh, Madre MA, Guilmeau E, Marinel S, Diez JC. Solution-based synthesis routes to thermoelectric Bi2Ca2Co1.7Ox. J Eur Ceram Soc. 2011;31(9):1763–9. doi:10.1016/j.jeurceramsoc.2011.03.008

Sun J, Yang M, Guobao L, Yang T, Liao F, Wang Y, Xiong M, Lin J. New Barium Cobaltite Series Ban+1ConO3n+3(Co8O8): Intergrowth Structure Containing Perovskite and CdI2-Type Layers. Inorg Chem. 2006;45(23):9151–3. doi:10.1021/ic060992v

Delorme F, Chen C, Pignon B, Schoenstein F, Perriere L, Giovannelli F. Promising high temperature thermoelectric properties of dense Ba2Co9O14 ceramics. J Eur Ceram Soc. 2017;37(7):2615–20. doi:10.1016/j.jeurceramsoc.2017.01.034

Ehora G, Daviero-Minaud S, Colmont M, Andre G., Mentre O. Ba2Co9O14: New Inorganic Building Blocks with Magnetic Odrering through Super-Super Exchanges Only. Chem Mater. 2007;19:2180–8. doi:10.1021/cm062987q

Cheng JG, Zhou JS, Hu Z, Suchomel MR, Chin YY, Kuo CY, Lin HJ, Chen JM, Pi DW, Chen CT, Takami T, Tjeng LH, Goodenough JB. Spin-state transition in Ba2Co9O14. Phys Rev B. 2012;85:094424. doi:10.1103/PhysRevB.85.094424

Takami T, Saiki S, Cheng J, Goodenough JB. Magnetic and Transport Properties of Ba2Co9O14 and Ba1.9A0.1Co9O14 (A = La or Na). J Phys Soc Jap. 2010;79(11):114713. doi:10.1143/JPSJ.79.114713

Zagrioui M, Delorme F, Chen C, Camara NR, Giovannelli F. Raman study of high temperature insulator-insulator transition in Ba2Co9O14. Solid State Sci. 2018;79:1–5. doi:10.1016/j.solidstatesciences.2018.03.003

Rolle A, Preux N, Ehora G, Mentre O, Daviero-Minaud S. Potentiality of Ba2Co9O14 as cathode material for IT-SOFC on various electrolytes. Solid State Ionics. 2011;184:31–4. doi:10.1016/j.ssi.2010.10.016

Li Y, Xu MW, Goodenough JB. Electrochemical performance of Ba2Co9O14+SDC composite cathode for intermediate-temperature solid oxide fuel cells. J Power Sources. 2012;209:40–3. doi:10.1016/j.jposour.2012.02.034

Matsukevich IV, Klyndyuk AI, Tugova EA, Tomkovich MV, Krasutskaya NS, Gusarov VV. Synthesis and Properties of Materials Based on Layered Calcium and Bismuth Cobaltites. Rus J Appl Chem. 2015;88(8):1241–7. doi:10.1134/S1070427215080030

Klyndyuk AI, Chizhova EA. Structure, Thermal Expansion, and Electrical Properties of BiFeO3–NdMnO3 Solid Solutions. Inorg Mater. 2015;51(3):272–7. doi:10.1134/S0020168515020090

Klyndyuk AI, Petrov GS, Poluyan AF, Bashkirov LA. Structure and Physicochemical Properties of Y2Ba1–xMxCuO5 (M = Sr, Ca) Solid Solutions. Inorg Mater. 1999;35(5):512–6.

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi:10.1107/S0567739476001551

Kurgan SV, Petrov GS, Bashkirov LA, Klyndyuk AI. Properties of Nd1–xGdxCoO3 Solid Solutions. Inorg. Mater. 2004;40(11):1224–8.

Lubinsky NN, Bashkirov LA, Petrov GS, Klyndyuk AI. Thermo-EMF and Electric Conductivity of Lanthanum and Neodymium Cobaltites–Gallates Solid Solutions. J Thermoelectricity. 2009;(1):47–54.

Mott NF, Davis EA. Electronic Processes in Non-Crystalline Materials. 2nd ed. New York, USA: Oxford University Press; 1979. 605 p.




DOI: https://doi.org/10.15826/chimtech.2020.7.1.04

Copyright (c) 2020 Andrei Ivanovich Klyndyuk, Ekaterina Anatol'yevna Chizhova, Svetlana Valer'yevna Shevchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International