Cover Image

Investigations into the structure of La3Ni2−xFexO7±δ

Evgeny Alexandrovich Kiselev, Piotr Gaczynski, Götz Eckold, Armin Feldhoff, Klaus-Dieter Becker, Vladimir Alexandrovich Cherepanov

Abstract


The room-temperature (RT) 57Fe Mössbauer spectra of the La3Ni2−xFexOδ oxide solid solutions of Ruddlesden-Popper-type (x = 0.05, 0.10) reveal two doublets for Fe3+ ions in octahedral coordination by oxygen. The existence of two inequivalent sites for Fe at RT is at variance with the space groups Fmmm and Cmcm (Amam) which have been reported for La3Ni2Oδ. This unexpected finding is discussed in connection with Patterson analyses and Rietveld refinements of powder XRD data for x = 0, 0.05, and 0.10. Alternative structural models have been proposed which can explain the spectroscopic findings and which are compatible with the results from X-ray diffraction.

Keywords


La3Ni2O7; complex oxides; Ruddlesden-Popper phases; Mössbauer spectroscopy; crystal structure; Patterson analysis; Rietveld refinement

Full Text:

PDF

References


Amow G, Davidson IJ, Skinner SJ. A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications. Solid State Ionics. 2006;177(13–14):1205–10. doi:10.1016/j.ssi.2006.05.005

Goettler R, Xing Z, Xue L, Hill M. Evaluation of Ruddlesden-Popper nickelate cathodes for higher temperature SOFC. Ceramic Engineering and Science Proceedings. 2008;28(4):183–94. doi: 10.1002/9780470339534.ch18

Takahashi S, Nishimoto S, Matsuda M, Miyake M, Electrode properties of the Ruddlesden–Popper series, Lan+1NinO3n+1 (n= 1, 2, and 3), as intermediate-temperature solid oxide fuel cells. J. Am. Ceram. Soc. 2010;93(8):2329-33. doi: 10.1111/j.1551-2916.2010.03743.x

Woolley RJ, Skinner SJ. Novel La2NiO4+δ and La4Ni3O10−δ composites for solid oxide fuel cell cathodes. J. Power Sources. 2013;243:790–95. doi: 10.1016/j.jpowsour.2013.06.106

Woolley RJ, Skinner SJ. Functionally graded composite La2NiO4+δ and La4Ni3O10−δ solid oxide fuel cell cathodes. Solid State Ionics. 2014;255:1–5. doi: 10.1016/j.ssi.2013.11.041

Brisi C., Vallino M, Abbattista F. Composition and structure of two hitherto unidentified phases in the system La2O3-NiO-O. J. Less Common Metals, 1981;79(2): 215-19. doi: 10.1016/0022-5088(81)90070-9

Drennan J, Tavares CP, Steele BCH. An electron microscope investigation of phases in the system La–Ni–O. Mat. Res. Bull. 1981;17(5):621-26. doi: 10.1016/0025-5408(82)90044-7

Odier P, Nigara Y, Coutures J, Sayer M. Phase relations in the La–Ni–O system: Influence of temperature and stoichiometry on the structure of La2NiO4. J. Solid State Chem. 1985;56(1):32-40. doi: 10.1016/0022-4596(85)90249-X

Ram RM, Ganapathi L, Ganguly P, Rao CNR. Evolution of three-dimensional character across the Lan+1NinO3n+1 homologous series with increase in n. J. Solid State Chem. 1986;63(2):139-47. doi: 10.1016/0022-4596(86)90163-5

Sreedhar K, McElfresh M, Perry D, Kim D, Metcalf P, Honig JM. Low-temperature electronic properties of the Lan+1NinO3n+1 (n= 2, 3, and∞) system: evidence for a crossover from fluctuating-valence to Fermi-liquid-like behavior. J. Solid State Chem. 1994;110(2):208-15. doi: 10.1006/jssc.1994.1161

Zhang Z, Greenblatt M, Goodenough JB. Synthesis, structure, and properties of the layered perovskite La3Ni2O7-δ. J. Solid State Chem. 1994;108(2):402-09. doi: 10.1006/jssc.1994.1059

Carvalho MD, Costa FMA, Pereira IS, Wattiaux A, Bassat JM, Grenier JC, Pouchard M. New preparation method of Lan+1NinO3n+1–δ (n= 2, 3). J. Mater. Chem. 1997;7(10):2107-11. doi: 10.1039/A702424J

Sasaki H, Harashina H, Taniguchi S, Kasai M, Kobayashi Y, Sato M, Sakata M. Structural studies on the phase transition of La3Ni2O6.92 at about 550, K. J. Phys. Soc. Jpn. 1997;66(6):1693-97. doi: 10.1143/jpsj.66.1693

Ling CD, Argyriou DN, Wu G, Neumeier JJ. Neutron diffraction study of La3Ni2O7: Structural relationships among n= 1, 2, and 3 phases Lan+1NinO3n+1. J. Solid State Chem. 2000;152(2):517-25. doi: 10.1006/jssc.2000.8721

Voronin VI, Berger IF, Cherepanov VA, Gavrilova LY, Petrov AN, Ancharov AI, Nikitenko SG. Neutron diffraction, synchrotron radiation and EXAFS spectroscopy study of crystal structure peculiarities of the lanthanum nickelates Lan+1NinOy (n= 1, 2, 3). Nucl. Instrum. Methods Phys. Res., Sect. A. 2001;470(1-2):202-209. doi: 10.1016/S0168-9002(01)01036-1

Bannikov DO, Cherepanov VA. Thermodynamic properties of complex oxides in the La–Ni–O system. J. Solid State Chem. 2006;179(8):2721-27. doi: 10.1016/j.jssc.2006.05.026

Savchenko VF, Ivashkevich LS,. Lubkina IYa, Russ. J. Inorg. Chem. 1988;33:30-33.

Kobayashi Y, Taniguchi S, Kasai M, Sato M, Nishioka, Kontani M. Transport and magnetic properties of La3Ni2O7-δ and La4Ni3O10-δ. J. Phys. Soc. Jpn. 1996;65(12):3978-82. doi: doi.org/10.1143/jpsj.65.3978

Gervais F, Odier P, Nigara Y. Plasmon behavior at the “semiconductor-metal” transition in La2NiO4 and La3Ni2O7. Solid State Commun. 1985;56(4):371-74. doi: 10.1016/0038-1098(85)90405-3

Zinkevich M, Solak N, Nitsche H, Ahrens M, Aldinger F. Stability and thermodynamic functions of lanthanum nickelates. J. Alloys Compd. 2007; 438(1-2):92-99. doi: 10.1016/j.jallcom.2006.08.047

Fontcuberta J, Longworth G, Goodenough JB. Magnetic order or charge-density wave in La2NiO4 by Mössbauer spectroscopy. Phys. Rev. B. 1984;30(11):6320. doi: 10.1103/PhysRevB.30.6320

Tsipis EV, Naumovich EN, Patrakeev MV, Waerenborgh JC, Pivak YV, Gaczyński P, Kharton VV. Oxygen non-stoichiometry and defect thermodynamics in La2Ni0.9Fe0.1O4+δ. J. Phys. Chem. Solids. 2007;68(7):1443-55. doi: 10.1016/j.jpcs.2007.04.006

Klande T, Efimov K, Cusenza S, Becker KD, Feldhoff A. Effect of doping, microstructure, and CO2 on La2NiO4+δ-based oxygen-transporting materials. J. Solid State Chem. 2011;184(12):3310-18. doi: 10.1016/j.jssc.2011.10.019

Klande T, Cusenza S, Gaczyński P, Becker KD, Dörrer L, Borchardt G, Feldhoff A. In-situ Mössbauer studies of 57Fe-doped Ruddlesden–Popper type lanthanum nickel oxides. Solid State Ionics, 2012;222-223:8-15. doi: 10.1016/j.ssi.2012.06.019

Carvalho MD, Wattiaux A, Ferreira LP, Bassat JM. Mössbauer investigation of 57Fe doped La4Ni3O10±y phases. J. Solid State Chem. 2009;182(1):60-64. doi: 10.1016/j.jssc.2008.10.006

Tsipis EV, Patrakeev MV, Waerenborgh JC, Pivak YV, Markov AA, Gaczyński P, Kharton VV. Oxygen non-stoichiometry of Ln4Ni2.7Fe0.3O10−δ (Ln= La, Pr). J. Solid State Chem. 2007;180(6):1902-10. doi: 10.1016/j.jssc.2007.04.025

Rodriguez-Carvajal, J. Commission on powder diffraction (IUCr). Newsletter, 2001;26:12.

Lagarec K, Rancourt DG. RECOIL, Mössbauer spectral analysis software for windows (version 1.02). Ottawa :Department of Physics, University of Ottawa;1998.

Gütlich P, Bill E, Trautwein AX, Mössbauer Spectroscopy and Transition Metal Chemistry. Berlin, Heidelberg: Springer; 2011. 568 p. doi: 10.1007/978-3-540-88428-6

Menil F. Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond TX (→ Fe)(where X is O or F and T any element with a formal positive charge). J. Phys. Chem. Solids. 1985;46(7):763-89. doi: 10.1016/0022-3697(85)90001-0

Rancourt DG. Accurate site populations from Mössbauer spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B. 1989;44(2):199-210. doi: 10.1016/0168-583X(89)90428-X

Boultif A, Louër D. Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 2004;37(5):724-31 doi: 10.1107/S0021889804014876

Visser JW. A fully automatic program for finding the unit cell from powder data. J. Appl. Crystallogr. 1969;2(3):89-95. doi: 10.1107/S0021889869006649

Roisnel T, Rodríquez-Carvajal J. WinPLOTR: a windows tool for powder diffraction pattern analysis. In Materials Science Forum (Vol. 378, No. 1, pp. 118-123). Transtec Publications; 1999.

Hahn Th. International Tables for Crystallography, Vol. A: Space-group symmetry. 5th ed. Dordrecht: Springer; 2005. 911 p.

Kraus W, Nolze G. POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996;29(3):301-03. doi: 10.1107/S0021889895014920

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67. doi: 10.1107/S0567739476001551

Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto SI, Sato M. Transport, magnetic and thermal properties of La3Ni2O7-δ. J. Phys. Soc. Jpn. 1995;64(5):1644-50. doi: doi.org/10.1143/jpsj.64.1644

Eckold G. UNISOFT – A Program Package for Lattice-Dynamical Calculations: User Manual, 2nd rev. ed. Jülich: Jülich Forschungszentrum;1992.

Stevens JG, Dunlap BD. Nuclear moments and moment ratios as determined by Mössbauer spectroscopy. J. Phys. Chem. Ref. Data, 1976;5(4):1093-122. doi: 10.1063/1.555541

Liverts EZ, Zhetbaev AK. Sternheimer Quadrupole Factors in Ferric Compounds. Phys. Status Solidi B. 1982;111(2):469-475. doi: 10.1002/pssb.2221110207




DOI: https://doi.org/10.15826/chimtech.2019.6.2.03

Copyright (c) 2019 Evgeny Alexandrovich Kiselev, Piotr Gaczynski, Götz Eckold, Armin Feldhoff, Klaus-Dieter Becker, Vladimir Alexandrovich Cherepanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International