Cover Image

Simulation of borosilicate glasses with non-constant force field molecular dynamics

Anton A. Raskovalov

Abstract


In this study the simulation of microscopical behavior of borosilicate glasses was conducted with non-constant force field molecular dynamics. The suggested model consists of classical pair potentials in the Buckingham form, long range Coulomb interaction, intramolecular bonded interactions and possibility of bond breaking and formation. The latter effects are accompanied by changes in the types of the bond-forming particles. The simulated system corresponds to the structure of borosilicate glasses with predominantly four-coordinated boron atoms. Different structure groups are formed due to the dissociation / formation of intramolecular bonds, and the processes of the glass network rearrangement intensifies with temperature increasing.

Keywords


molecular dynamics; non-constant force field; glass; borate; silicate

Full Text:

PDF

References


Delaye JM, Ghaleb D. Molecular dynamics simulation of a nuclear waste glass matrix. Materials Science and Engineering B. 1996;37:232-6.

Tilocca A. Sodium migration pathways in multicomponent silicate glasses: Car–Parrinello molecular dynamics simulations. J Chem Phys. 2010;133:014701. doi:10.1063/1.3456712

Verhoef AH, Den Hartog HW. Molecular Dynamics simulations of borate glasses. Rad Effect Defect Solids. 1991;119-121(2):493-8. doi:10.1080/10420159108220770

Varsamis C-PE, Vegiri A, Kamitsos EI. Molecular dynamics investigation of lithium borate glasses: Local structure and ion dynamics. Phys Rev B. 2002;65:104203. doi:10.1103/PhysRevB.65.104203

Cormack AN, Du J, Zeitler TR. Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations. Phys Chem Chem Phys. 2002;4:3193–7. doi:10.1039/b201721k

Smeacetto F, Miranda A, Chrysanthou A, et al. Novel Glass-Ceramic Composition as Sealant for SOFCs. J Am Ceram Soc. 2014;97:3835−42. doi:10.1111/jace.13219

Inoue H, Aoki N, Yasui I. Molecular Dynamics Simulation of the Structure of Borate Glasses. J Am Ceram Soc. 1987; 70(9):622-7. doi:10.1111/j.1151-2916.1987.tb05729.x

Xu Q, Kawamura K, Yokokawa T. Molecular dynamics calculations for boron oxide and sodium borate glasses. J Non-Cryst Solids. 1988;104(2-3):261-72. doi:10.1016/0022-3093(88)90397-3

Vessal B, Amini M, Leslie M, Catlow CRA. Potentials for Molecular Dynamics Simulation of Silicate Glasses. Mol Sim. 1990;5(1-2):1-7. doi:10.1080/08927029008022407

Cormack AN, Cao Yu. Molecular Dynamics Simulation of Silicate Glasses. Mol Eng. 1996;6:183. doi:10.1007/BF00161727

Rossano S, Ramos A, Delaye J-M, Creux S, Filipponi A, Brouder Ch, Calas G. EXAFS and Molecular Dynamics combined study of CaO-FeO-2SiO2 glass. New insight into site significance in silicate glasses. Europhys Lett. 2000;49(5):597–602.

Cormak AN, Du J. Molecular dynamics simulation of soda-lime-silicate glasses. J Non-Cryst Solids. 2001; 293-295:283-9.

Gou F, Greaves GN, Smith W, Winter R. Molecular dynamics simulation of sodium borosilicate glasses. J Non-Cryst Solids. 2001;293(1):539-46. doi:10.1016/S0022-3093(01)00775-X

Sawaguchi N, Yamaguchi K, Sasaki M, Kawamura K. Interatomic Potential Model for Molecular Dynamics Simulation of Lithium Borate Melts/Glasses. J Comp Chem. 2015;14(4):139-46. doi:10.2477/jccj.2015-0017

Scherer C. Molecular dynamics simulations of silicate and borate glasses and melts: Structure, diffusion dynamics and vibrational properties [dissertation]. Mainz (Germany): Fachbereich Physik, Mathematik und Informatik der Johannes Gutenberg-Universitat; 2015. 189 p.

Li X, Song W, Yang K, Anoop Krishnan NM, Wang B, Smedskjaer MM, Mauro JC,

Sant G, Balonis M, Bauchy M. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments. J Chem Phys. 2017; 147:074501. doi:10.1063/1.4998611

Yu Y, Wang B, Wang M, Sant G, Bauchy M. Reactive molecular dynamics simulations of sodium silicate glasses – Toward an improved understanding of the structure. Int J Appl Glass Sci. 2017;8:276-84. doi:10.1111/ijag.12248

Stevensson B, Yu Ya, Ed´en M. Structure-Composition Trends in Multicomponent Borosilicate-Based Glasses Deduced from Molecular Dynamics Simulations with Improved B–O and P–O Force Fields. Phys Chem Chem Phys. 2018;20:8192-209. doi:10.1039/C7CP08593A

Wang M, Anoop Krishnana NM, Wang B, Smedskjaer MM, Mauro JC, Bauchya M. A new transferable interatomic potential for molecular dynamics simulations of borosilicate glasses. J Non-Cryst Solids. 2018;498:294-304. doi:10.1016/j.jnoncrysol.2018.04.063

Car R, Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys Rev Lett. 1985;55:2471-4. doi:10.1103/PhysRevLett.55.2471

van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: A Reactive Force Field for Hydrocarbons. J Phys Chem A. 2001;105:9396–409. doi:10.1021/jp004368u

Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys Rev. 1967;159(1):98-103. doi:10.1103/PhysRev.159.98

Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML. Explicit Reversible Integrators for Extended Systems Dynamics. Mol Phys. 1996;87(5):1117-57. doi:10.1080/00268979600100761

Wu J, Stebbins JF. Cation Field Strength Effects on Boron Coordination in Binary Borate Glasses. J Amer Ceram Soc. 2014; 97(9):2794-801. doi:10.1111/jace.13100




DOI: https://doi.org/10.15826/chimtech.2019.6.1.01

Copyright (c) 2018 Anton Alexandrovich Raskovalov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International