Cover Image

Study and optimization of the synthesis routine of the single phase YBaCo2O6-δ double perovskite

A. L. Sednev, D. S. Tsvetkov

Abstract


The chemical interaction of YCoO3-δ and BaCoO3-δ with formation of double perovskite was studied depending on temperature and oxygen partial pressure. The stability of YCoO3 was shown to have а crucial influence on the kinetics and mechanism of YBaCo2O6-δ formation. It was found that at 1000 °C in air, i.e. under conditions when YCoO3 is unstable, the double perovskite YBaCo2O6-δ is formed much slower compared to the pure oxygen atmosphere where YCoO3 is stable at the same temperature. Thus controlling YCoO3 stability was shown to be the factor of key importance for optimal preparation of the YBaCo2O6-δ single phase.

Keywords


YBaCo2O6 synthesis, YCoO3 instability, pO2 acceleration, double perovskite synthesis, YBaCo2O5, YCoO3, BaCoO3

Full Text:

PDF

References


Haoshan H, Lu Z, Yingfan W, Shijiang L, Xing H. Thermogravimetric study on oxygen adsorption/desorption properties of double perovskite structure oxides REBaCo2O5+δ (RE = Pr, Gd, Y). J Rare Earths. 2007;25:275–81. doi:10.1016/S1002-0721(07)60421-9

Hao H, Chen B, Zhao L, Hu X. Oxygen removal from nitrogen using YBaCo2O5+δ adsorbent. Korean J Chem Eng. 2011;28(2):563-66. doi:10.1007/s11814-010-0354-9

Xue J, Shen Y, He T. Double-perovskites YBaCo2−xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells. J Power Sources. 2011;196(8):3729-35. doi:10.1016/j.jpowsour.2010.12.071

Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics. 2014;262:354–8. doi:10.1016/j.ssi.2013.11.009

Pelosato R, Donazzi A, Dotelli G, Cinzia C, Sora IN, Mariani MP. Electrical characterization of co-precipitated LaBaCo2O5+δ and YBaCo2O5+δ oxides. J Europ Ceram Soc. 2014;34:4257-72. doi:10.1016/j.jeurceramsoc.2014.07.005

Zhang Y, Yu B, Lü S, Meng X, Zhao X, Ji Y. Effect of Cu doping on YBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochim Acta. 2014;134:107-15. doi:10.1016/j.electacta.2014.04.126

Yi L.YBaCo2O5+δ as a new cathode material for zirconia-based solid oxide fuel cells. J Alloys Compd. 2009;477:860-2. doi:10.1016/j.jallcom.2008.11.010

Kim JH, Manthiram A. LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc. 2008;155(4):B385-90. doi:10.1149/1.2839028

Meng F, Xia T, Wang J, Shi Z, Lian J, Zhao H, Bassat JM, Grenier JC. Evaluation of layered perovskites YBa1−xSrxCo2O5+δ as cathodes for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energy. 2014;39:4531-43. doi:10.1016/j.ijhydene.2014.01.008

Zhang X, Hao H, He Q, Hu X. High-temperature electronic transport properties of Fe-doped YBaCo2O5+δ. Phys B. 2007;39(1):118-21. doi:10.1016/j.physb.2007.02.027

Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater. 2008;56(17):4876-89. doi:10.1016/j.actamat.2008.06.004

Kim JH, Kim YN, Bi Z, Manthiram A, Paranthaman MP, Huq A. Overcoming phase instability of RBaCo2O5+δ (R= Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells. Solid State Ionics. 2013;253:81-7. doi:10.1016/j.ssi.2013.09.001

Sednev AL, Zuev AYu, Tsvetkov DS. Oxygen content and thermodynamic stability of YBaCo2O6-δ double perovskite. Adv Mater Sci Eng. Forthcoming 2017.

Xuening J, Hongxia X, Qian W, Lei J, Xiangnan L, Qiuli X, Yuchao S, Qingyu Z. Fabrication of GdBaCo2O5+d cathode using electrospun composite nanofibers and its improved electrochemical performance. J Alloys Compd. 2013;557:184-9. doi:10.1016/j.jallcom.2013.01.015

Buassi-Monroy OS, Luhrs CC, Chávez-Chávez A, Michel CR. Synthesis of crystalline YCoO3 perovskite via sol–gel method. Mater Lett. 2004;58(5):716-8. doi:10.1016/j.matlet.2003.07.001

Urusova AS, Cherepanov VA, Aksenova TV, Gavrilova LY, Kiselev EA. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y–Ba–Co–O system. J Solid State Chem. 2013;202:207-14. doi:10.1016/j.jssc.2013.03.037

Knizek K, Jirak Z, Hejtmanek J, Veverka M, Marysko M, Hauback BC, Fjellvag H. Structure and physical properties of YCoO3–δ at temperatures up to 1000 K. Phys Rev B: Condens Matter. 2006;73:214443. doi:10.1103/PhysRevB.73.214443

Balamurugan S, Takayama-Muromachi E. Structural and magnetic properties of high-pressure/high-temperature synthesized (Sr1–xRx)CoO3 (R=Y and Ho) perovskites. J Solid State Chem. 2006;179(7):2231-6. doi:10.1016/j.jssc.2006.04.028

Felser C, Yamaura K, Cava RJ. The electronic structure of hexagonal BaCoO3. J Solid State Chem. 1999;146(2):411-7. doi:10.1006/jssc.1999.8382

Botta PM, Pardo V, de la Calle C, Baldomir D, Alonso JA, Rivas J. Ferromagnetic clusters in polycrystalline BaCoO3. J Magn Magn Mater. 2007;316(2):e670-3. doi:10.1016/j.jmmm.2007.03.058

Jacobson AJ, Hutchinson JL. An investigation of the structure of 12H BaCoO2.6 by electron microscopy and powder neutron diffraction. J Solid State Chem. 1980;35(3):334-40. doi:10.1016/0022-4596(80)90530-7

Demazeau G, Pouchard M, Hagenmuller P. Sur de nouveaux composés oxygénés du cobalt+ III dérivés de la perovskite. J Solid State Chem. 1974;9(3):202-9. doi:10.1016/0022-4596(74)90075-9

Feng G, Xue Y, Shen H, Feng S, Li L, Zhou J, Yang H, Xu D. Sol–gel synthesis, solid sintering, and thermal stability of single-phase YCoO3. Phys Status Solidi A. 2012;209(7):1219-24. doi:10.1002/pssa.201127710

Kropanev AYu, Petrov AN. Termicheskie svoystva cobal’titov redkozemel’nykh elementov sostava RCoO3 [Termal properties of cobaltites of rare earth elements RCoO3]. Zhurnal Fizicheskoy Khimii. 1984;58(1):50-3. Russian.

Kropanev AYu, Petrov AN. Termicheskaya ustoychivost’ cobal’titov LnCoO3 na vozduhe (Ln – Sm, Eu, Gs, Tb, Dy, Ho) [termal stability of cobaltites LnCoO3 in air]. Izv AN SSSR. Neorganicheskie materialy. 1983;19(12):2027-30. Russian.

Kozlenko DP, Jirák Z, Golosova NO, Savenko BN. Magnetic ground state and the spin-state transitions in YBaCo2O5.5. Eur Phys J B. 2009;70(3):327-34. doi:10.1140/epjb/e2009-00228-x

Aurelio G, Curiale J, Sánchez RD, Cuello GJ. Probing phase coexistence and stabilization of the spin-ordered ferrimagnetic state by calcium addition in the Y(Ba1−xCax)Co2O5.5 layered cobaltites using neutron diffraction. Phys Rev B. 2007;76(21):214417. doi:10.1103/PhysRevB.76.214417




DOI: https://doi.org/10.15826/chimtech/2017.4.3.03

Copyright (c) 2017 A. L. Sednev, D. S. Tsvetkov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International