Cover Image

Supervalent doping of LiFePO4 for enhanced electrochemical performance

N. V. Kosova, O. A. Podgornova

Abstract


The orthophosphates LiFe0.9M0.1PO4 with the structure of olivine doped with vanadium and titanium were obtained by mechanochemically stimulated solidphase synthesis using high-energy planetary mill AGO-2 and subsequent annealing at 750 °C. It is shown that V- and Ti- ions do not completely substitute for Fe2+ ions in the LiFePO4 structure. The remaining part of these ions involve in the formation of second phase with nashiko-like structure: monoclinic Li3V2(PO4)3 (space group P21/n ) and rhombohedral LiTi2(PO4)3 (space group R-3c). According to TEM, the average size of the particle of nanocomposites is about 100-300 nm. EMF of microanalysis showed that the small particles of secondary phases are segregated at the surface of larger particles of LiFePO4. On the charge-discharge curves of LiFe0.9M0.1PO4 there are plateau corresponding to LiFePO4 and the second phase. The doping with vanadium increases the resistance of the cycling of LiFePO4 and improves its cyclability at high speeds to a greater extent than in the case of doping with titanium.

Keywords


LiFePO4; supervalence doping; mechanochemical activation; electrochemical cycling

Full Text:

PDF

References


Yamada A, Chung SC, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc. 2001;148(3):A224-9. doi:10.1149/1.1348257

Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M. Electroactivity of natural and synthetic triphylite. J Power Sources. 2001;97-98:503-507. doi:10.1016/S0378-7753(01)00727-3

Chung SY, Chiang YM. Microscale Measurements of the Electrical Conductivity of Doped LiFePO4. Electrochem Solid-State Lett. 2003;6(12):A278-81. doi:10.1149/1.1621289

Prosini PP, Lisi M, Zane D, Pasquali M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics. 2002;148(1-2):45-51. doi:10.1016/S0167-2738(02)00134-0

Fisher CAJ, Prieto VMH, Islam MS. Lithium battery materials LiMPO4 (M = Mn, transport Fe, Co, and Ni): Insights into defect association, mechanisms, and doping behavior. Chem Mater. 2008;20(18):5907-15. doi:10.1021/cm801262x

Wang L, Li Z, Xu H, Zhang K. Studies of Li3V2(PO4)3 Additives for the LiFePO4-Based Li Ion Batteries. J Phys Chem C. 2008;112:308-12. doi:10.1021/jp0758014

Omenya F, Chernova NA, Upreti S, Zavalij PY, Nam KW, Yang XQ, Whittigham MS. Can vanadium be substituted into LiFePO4? Chem Mater. 2011;23(21):4733-40. doi:10.1021/cm2017032

Xiang JY, Tu JP, Zhang L, Wang XL, Zhou Y, Qiao YQ, Lu Y. Improved electrochemical performances of 9LiFePO4·Li3V2(PO4)/C composite prepared by a simple solid-state method. J Power Sources. 2010;195(24):8331-5. doi:10.1016/j.jpowsour.2010.06.070

Ma J, Li B, Du H, Xu C, Kang F. The Effect of Vanadium on Physicochemical and Electrochemical Performances of LiFePO4 Cathode for Lithium Battery. J Electrochem Soc. 2011;158(1):A26-32. doi:10.1149/1.3514688

Zhang LL, Liang G, Ignatov A, Croft MC, Xiong XQ, Hung IM, Huang Y H, Hu XL, Zhang WX, Peng YL. Effect of vanadium incorporation on electrochemical performance of LiFePO4 for lithium-ion batteries. J Phys Chem C. 2011;115(27):13520-7. doi:10.1021/jp2034906

Chiang CY, Su HC, Liu PJ, Hu CW, Sharma N, Peterson VK, Hsieh H W, Lin YF, Chou WC, Lee CH, Lee JF, Shew BY. Vanadium substitution of LiFePO4 cathode materials to enhance the capacity of LiFePO4-based lithium-ion batteries. J Phys Chem C. 2012;116(46):24424-9. doi:10.1021/jp307047w

Zhong S, Wu L, Liu J. Sol–gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries. Electrochim Acta. 2012;74:8-15. doi:10.1016/j.electacta.2012.03.181

Wang GX, Bewlay S, Needham SA, Liu HK, Liu RS, Drozd VA, Lee J F, Chen J M. Synthesis and characterization of LiFePO4 and LiTi0.01Fe0.99PO4 cathode materials. J Electrochem Soc. 2006;153(1):A25-31. doi:10.1149/1.2128766

Wang ZH, Pang QQ, Deng KJ, Yuan LX, Huang F, Peng YL, Huang YH. Effects of titanium incorporation on phase and electrochemical performance in LiFePO4 cathode material. Electrochim Acta. 2012;78:576-84. doi:10.1016/j.electacta.2012.06.067

Fang H, Liang G, Zhao L, Wallace T, Arava H, Zhang LL, Ignatov A, Croft MC. Electrochemical Properties of Cathode Material LiFePO4 with Ti Substitution. J Electrochem Soc. 2013;160(5):A3148-52. doi:10.1149/2.024305jes

Koenig GM, Jr, Ma J, Key B, Fink J, Low KB, Shahbazian-Yassar R, Belharouak I. Composite of LiFePO4 with titanium phosphate phases as lithium-ion battery electrode material. J Phys Chem C. 2013;117(41):21132-8. doi:10.1021/jp4074174

Huang H, Yin SC, Kerr T, Taylor N, Nazar LF. Nanostructured composites: A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater. 2002;14(21):1525–8. doi:10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3

Belous AG, Novitzkaya G N, Polyanetzkaya SV, Gornikov YuI. Study of Complex Oxides of Composition La//2/////3// minus //xLi//3//xTiO//3. Neorg Mater. 1987;23(3):470–2.

Patoux S, Masquelier C. Lithium insertion into titanium phosphates, silicates, and sulfates. Chem Mater. 2002;14(12):5057-68. doi:10.1021/cm0201798

Kosova NV, Devyatkina ET, Slobodyuk AB, Petrov SA. Submicron LiFe 1-yMnyPO4 solid solutions prepared by mechanochemically assisted carbothermal reduction: The structure and properties. Electrochim Acta. 2012;59(1):404-11. doi:10.1016/j.electacta.2011.10.082

Kosova NV, Podgornova OA, Devyatkina ET, Podugolnikov VR, Petrov SA. Effect of Fe2+ substitution on the structure and electrochemistry of LiCoPO4 prepared by mechanochemically assisted carbothermal reduction. J Mater Chem A. 2014;2(48):20697-705. doi:10.1039/c4ta04221b




DOI: https://doi.org/10.15826/chimtech.2015.2.4.030

Copyright (c) 2015 N. V. Kosova, O. A. Podgornova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Website Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International