Cover Image

Structural properties, morphology, total conductivity and oxygen mobility of composite materials based on Bi cerates

Nikita Eremeev, Semyon Mironov, Ekaterina Sadovskaya, Tamara Krieger, Arcady Ishchenko, Artyom Ulikhin, Vladislav Sadykov, Yulia Bespalko

Abstract


Search of the new composite materials with mixed oxide-ionic–electronic conductivity and studies of their characteristics are important problems in the development of oxygen separation membranes as parts of catalytic reactors for biofuel transformation into syngas. Such composites are generally based on complex oxides with perovskite, fluorite, pyrochlore structure, etc. In this work, composites based on Bi cerates, Y-doped ceria and Pr nickelate-cobaltite are synthesized and studied. The composites are synthesized via ultrasonic dispersion in isopropanol. The obtained materials are characterized by X-ray diffraction, scanning and high resolution transmission electron microscopy. Electrical conductivity of the composites is studied by impedance spectroscopy. Oxygen transport properties are investigated by isotope exchange of oxygen with C18O2 in a flow reactor. The samples are comprised of fluorite, perovskite and, sometimes, pyrochlore phases and various admixtures with different compositions, apparently, due to cation redistribution and solid state reactions between phases. The total conductivity of samples is ~10−1 S/cm at 600 °C, which is high enough for using in the oxygen separation membranes. According to the isotope exchange data, the samples possess high oxygen mobility and surface reactivity. There is a distinct nonuniformity in the oxygen mobility, which is related to the effect of fast diffusion of oxygen associated with Bi and Ce cations, as well as the features of phase composition and real/defect structure. This makes the composites studied promising for using in the oxygen separation membranes.

Keywords


fluorites; Bi cerates; composites; impedance spectroscopy; isotope heteroexchange; oxygen mobility

Full Text:

PDF

References


Chen G, Widenmeyer M, Yu X, Han N, Tan X, Homm G, Liu S, Weidenkaff A. Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. J Am Ceram Soc. 2024;107(3):1490–504. doi:10.1111/jace.19411

Ji Liu J, Zhao J, Liu Y, Zhu Y, Zhou W, Gu Z, Zhang G, Liu Z. Research progress of computational fluid dynamics in mixed ionic–electronic conducting oxygen-permeable membranes. Membranes. 2025;15(7):193. doi:10.3390/membranes15070193

Gao S, Song Z, Sun H, Zhang Y, Ma J, Zhang Y. Progress of oxygen generation technologies in high-altitude and emergency rescue conditions. Asia-Pac J Chem Eng. 2025;20(4):e70040. doi:10.1002/apj.70040

Singh R, Prasad B, Ahn YH. Recent developments in gas separation membranes enhancing the performance of oxygen and nitrogen separation: A comprehensive review. Gas Sci Eng. 2024;123:205256. doi:10.1016/j.jgsce.2024.205256

Casadio S, Gondolini A, Mercadelli E, Sanson A. Advances and prospects in manufacturing of ceramic oxygen and hydrogen separation membranes. Renew Sustain Energy Rev. 2024;200:114600. doi:10.1016/j.rser.2024.114600

Bharatee RK, Quaff AR, Jaiswal SK. Advances in perovskite membranes for carbon capture & utilization: A sustainable approach to CO2 emissions reduction – A review. J Environ Manage. 2025;380:124924. doi:10.1016/j.jenvman.2025.124924

Porotnikova N, Osinkin D. Segregation and interdiffusion processes in perovskites: A review of recent advances. J Mater Chem A. 2024;12(5):2620–46. doi:10.1039/D3TA06708D

Medvedev DA. Doping design strategies of proton-conducting perovskite oxides: A brief compositional map. Int J Hydrogen Energy. 2025;161:150689. doi:10.1016/j.ijhydene.2025.150689

Lei S, Wang A, Xue J, Wang H. Catalytic ceramic oxygen ionic conducting membrane reactors for ethylene production. React Chem Eng. 2021;6(8):1327–41. doi:10.1039/D1RE00136A

Zhu X, Yang W. Microstructural and interfacial designs of oxygen‐permeable membranes for oxygen separation and reaction–separation coupling. Adv Mater. 2019;31(50):1902547. doi:10.1002/adma.201902547

Shlyakhtina AV, Shcherbakova LG. New solid electrolytes of the pyrochlore family. Russ J Electrochem. 2012;48(1):1–25. doi:10.1134/S1023193512010144

Kharton VV, Tsipis EV, Yaremchenko AA, Vyshatko NP, Shaula AL, Naumovich EN, Frade JR. Oxygen ionic and electronic transport in Gd2−xCaxTi2O7−δ pyrochlores. J Solid State Electrochem. 2003;7(8):468–76. doi:10.1007/s10008-002-0348-6

Dergacheva PE, Kul’bakin IV, Ashmarin AA, Titov DD, Fedorov SV. Bi1.4Er0.6Ru2O7–50 wt % δ Bi2O3 oxygen-permeable membrane material prepared by crystallization from partially molten state. Russ J Inorg Chem. 2021;66(8):1229–33. doi:10.1134/S0036023621080040

Piir I, Koroleva M, Krasnov A. Electrochemical properties of complex pyrochlores. In: Pyrochlore Ceramics. Elsevier; 2022. pp. 243–75. doi:10.1016/B978-0-323-90483-4.00006-4

Baratov S, Filonova E, Ivanova A, Hanif MB, Irshad M, Khan MZ, Motola M, Rauf S, Medvedev D. Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews. J Energy Chem. 2024;94:302–31. doi:10.1016/j.jechem.2024.02.047

Bukhari M, Mohsin M, Kayani ZN, Rasool S, Raza R. The La+3-, Nd+3-, Bi+3-doped ceria as mixed conductor materials for conventional and single-component solid oxide fuel cells. Energies. 2023;16(14):5308. doi:10.3390/en16145308

Thangamuthu P, Moorthy S, Maria Mahimai B, Kannaiyan D, Deivanayagam P. High performance bismuth oxide embedded sulfonated poly ether sulfone composite membranes for fuel cell applications. J Macromol Sci. A 2023;60(3):171–80. doi:10.1080/10601325.2023.2186793

Emhjellen LK, Xing W, Li Z, Haugsrud R. Oxygen permeability and surface kinetics of composite oxygen transport membranes based on stabilized δ-Bi2O3. J Membr Sci. 2022;660:120875. doi:10.1016/j.memsci.2022.120875

Li ZC, Zhang H, Bergman B. Synthesis and characterization of nanostructured Bi2O3-doped cerium oxides fabricated by PVA polymerization process. Ceram Int. 2008;34(8):1949–53. doi:10.1016/j.ceramint.2007.07.018

Cui B, Li Y, Li S, Xia Y, Zheng Z, Liu Y Q. Bi-doped ceria as a highly efficient catalyst for soot combustion: Improved mobility of lattice oxygen in CexBi1−xOy catalysts. Energy Fuels. 2020;34(8):9932–39. doi:10.1021/acs.energyfuels.0c01090

Accardo G, Audasso E, Yoon SP. Unravelling the synergistic effect on ionic transport and sintering temperature of nanocrystalline CeO2 tri-doped with Li Bi and Gd as dense electrolyte for solid oxide fuel cells. J Alloys Compd. 2022;898:162880. doi:10.1016/j.jallcom.2021.162880

Anantharaman AP, Prasad Dasari H. Potential of pyrochlore structure materials in solid oxide fuel cell applications. Ceram Int. 2021;47(4):4367–88. doi:10.1016/j.ceramint.2020.10.012

Wilde PJ, Catlow CRA. Defects and diffusion in pyrochlore structured oxides. Solid State Ionics. 1998;112(3–4):173–83. doi:10.1016/S0167-2738(98)00190-8

Pirzada M, Grimes RW, Minervini L, Maguire JF, Sickafus KE. Oxygen migration in A2B2O7 pyrochlores. Solid State Ionics. 2001;140(3–4):201–8. doi:10.1016/S0167-2738(00)00836-5

Matsumoto U, Ogawa T, Fisher CAJ, Kitaoka S, Tanaka I. Cooperative oxide-ion transport in pyrochlore Y2Ti2O7: A first-principles molecular dynamics study. J Phys Chem C. 2021;125(37):20460–7. doi:10.1021/acs.jpcc.1c03610

Shlyakhtina AV, Belov DA, Knotko AV, Avdeev M, Kolbanev IV, Vorobieva GA, Karyagina OK, Shcherbakova LG. Oxide ion transport in (Nd2−xZrx)Zr2O7+δ electrolytes by an interstitial mechanism. J Alloys Compd. 2014;603:274–81. doi:10.1016/j.jallcom.2014.03.068

Shlyakhtina AV Morphotropy, isomorphism, and polymorphism of Ln2M2O7-based (Ln = La–Lu, Y, Sc; M = Ti, Zr, Hf, Sn) oxides. Crystallogr Rep. 2013;58(4):548–62. doi:10.1134/S1063774513020259

Perriot R, Dholabhai PP, Uberuaga BP. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores. Nanoscale. 2017;9(20):6826–36. doi:10.1039/c7nr01373f

Gupta AK, Arora G, Aidhy DS, Sachan R. ∑3 twin boundaries in Gd2Ti2O7 pyrochlore: Pathways for oxygen migration. ACS Appl Mater Interfaces. 2020;12(40):45558–63. doi:10.1021/acsami.0c12250

Huo D, Baldinozzi G, Siméone D, Khodja H, Surblé S. Grain size-dependent electrical properties of La1.95Sr0.05Zr2O7−δ as potential proton ceramic fuel cell electrolyte. Solid State Ionics. 2016;298:35–43. doi:10.1016/j.ssi.2016.10.019

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystal A. 1976;32(5):751–67. doi:10.1107/S0567739476001551

Minervini L, Grimes RW, Sickafus KE. Disorder in pyrochlore oxides. J Am Ceram Soc. 2000;83(8):1873–8. doi:10.1111/j.1151-2916.2000.tb01484.x

Huang K, Feng M, Goodenough JB. Bi2O3–Y2O3–CeO2 solid solution oxide-ion electrolyte. Solid State Ionics. 1996;89(1–2):17–24. doi:10.1016/0167-2738(96)00260-3

Pesaran A, Jaiswal A, Ren Y, Wachsman ED. Development of a new ceria/yttria-ceria double-doped bismuth oxide bilayer electrolyte low-temperature SOFC with higher stability. Ionics. 2019;25(7):3153–64. doi:10.1007/s11581-019-02838-4

Uniyal S, Atri S, Uma S, Nagarajan R. Microstructural changes caused by Ba and Pr doping in nanosized Bi2Ce2O7 leading to interesting optical, magnetic, and catalytic property. CrystEngComm. 2021;3(4):986–99. doi:10.1039/D0CE01550D

Li G, Mao Y, Li L, Feng S, Wang M, Yao X. Solid solubility and transport properties of nanocrystalline (CeO2)1−x(BiO1.5)x by hydrothermal conditions. Chem Mater. 1999;11(5):1259–66. doi:10.1021/cm9806735

Accardo G, Spiridigliozzi L, Dell’Agli G, Yoon SP, Frattini S. Morphology and structural stability of bismuth-gadolinium co-doped ceria electrolyte nanopowders. Inorg. 2019;7(10):118. doi:10.3390/inorganics7100118

Bespalko Yu, Eremeev N, Sadovskaya E, Krieger T, Bulavchenko O, Suprun E, Mikhailenko M, Korobeynikov M, Sadykov V. Synthesis and oxygen mobility of bismuth cerates and titanates with pyrochlore structure. Membranes. 2023;13(6):598. doi:10.3390/membranes13060598

Sadykov VA, Pavlova SN, Kharlamova TS, Muzykantov VS, Uvarov NF, Okhlupin YuS, Ishchenko AV, Bobin AS, Mezentseva NV, Alikina GM, Lukashevich AI, Krieger TA, Larina TV, Bulgakov NN, Tapilin VM, Belyaev VD, Sadovskaya EM, Boronin AI, Sobyanin VA, Bobrenok OF, Smirnova AL, Smorygo OL, Kilner JA. Perovskites and their nanocomposites with fluorite-like oxides as materials for solid oxide fuel cells cathodes and oxygen-conducting membranes: Mobility and reactivity of the surface/bulk oxygen as a key factor of their performance. In: Perovskites: Structure, Properties and Uses. New York: Nova Science Publishers, Inc.; 2010. pp. 67–178.

Sadykov V, Eremeev N, Sadovskaya E, Bespalko Yu, Simonov M, Arapova A, Smal E. Nanomaterials with oxygen mobility for catalysts of biofuels transformation into syngas, SOFC and oxygen/hydrogen separation membranes: Design and performance. Catal Today. 2023;423:113936. doi:10.1016/j.cattod.2022.10.018

Sadykov VA, Eremeev NF, Sadovskaya EM, Bobin AS, Fedorova YuE, Muzykantov VS, Mezentseva NV, Alikina GM, Krieger TA, Belyaev VD, Rogov VA, Ulikhin AS, Okhlupin YuS, Uvarov NF, Bobrenok OF, McDonald N, Watton J, Dhir A, Steinberger-Wilckens R, Mertens J, Vinke IC. Cathodic materials for intermediate-temperature solid oxide fuel cells based on praseodymium nickelates-cobaltites. Russ J Electrochem. 2014;50(7):669–79. doi:10.1134/S1023193514070131

Stoyanovskii VO, Vedyagin AA, Volodin AM, Bespalko YuN. Effect of carbon shell on stabilization of single-phase lanthanum and praseodymium hexaaluminates prepared by a modified Pechini method. Ceram Int. 2020;46(18A):29150–9. doi:10.1016/j.ceramint.2020.08.088

Sadykov V, Pikalova E, Sadovskaya E, Shlyakhtina A, Filonova E, Eremeev N. Design of mixed ionic-electronic materials for permselective membranes and solid oxide fuel cells based on their oxygen and hydrogen mobility. Membranes. 2023;13(8):698. doi:10.3390/membranes13080698

Sadykov V, Sadovskaya E, Eremeev N, Kolchugin A, Filonova E, Tsvinkinberg V, Zhulanova T, Pikalova E. Novel materials based on Ruddlesden–Popper phases for solid oxide fuel cells and oxygen separation membranes: Fundamentals of oxygen transport. Chim Tech Acta. 2025;12(3):12304. doi:10.15826/chimtech.2025.12.3.04

Sadykov VA, Sadovskaya EM, Uvarov NF. Methods of isotopic relaxations for estimation of oxygen diffusion coefficients in solid electrolytes and materials with mixed ionic-electronic conductivity. Russ J Electrochem. 2015;51(5):458–67. doi:10.1134/S1023193515050109

De Souza RA. Limits to the rate of oxygen transport in mixed-conducting oxides. J Mater Chem A. 2017;5(38):20334–50. doi:10.1039/C7TA04266C

Farver JR. Oxygen and hydrogen diffusion in minerals. Rev Mineral Geochem. 2010;72(1)447–507. doi:10.2138/rmg.2010.72.10

Chroneos A, Goulatis IL, Solovjov A, Vovk RV. The evolution of solid oxide fuel cell materials. Appl Sci. 2024;14(1):69. doi:10.3390/app14010069

Klyndyuk AI, Chizhova EA, Kharytonau DS, Medvedev DA. Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells. Mater. 2022;15(1):141. doi:10.3390/ma15010141

Aidhy DS, Weber WJ. Microstructure design for fast oxygen conduction. J Mater Res. 2016;34(1):2–16. doi:10.1557/jmr.2015.327

Goel P, Gupta MK, Mittal R, Skinner SJ, Mukhopadhyay S, Rols S, Chaplot SL. Phonons and oxygen diffusion in Bi2O3 and (Bi0.7Y0.3)2O3. J Phys Condens Matter. 2020;32(33):334002. doi:10.1088/1361-648X/ab88f8

Bayliss RD, Cook SN, Kotsantonis S, Chater RJ, Kilner JA. Oxygen ion diffusion and surface exchange properties of the α- and δ-phases of Bi2O3. Adv Energy Mater. 2014;4(10):1301575. doi:10.1002/aenm.201301575

Sadykov V, Shlyakhtina A, Sadovskaya E, Eremeev N, Skazka V, Goncharov V. 2D diffusion of oxygen in Ln10Mo2O21 (Ln = Nd, Ho) oxides. Solid State Ionics. 2020;346:115229. doi:10.1016/j.ssi.2020.115229

Sadykov V, Shlyakhtina A, Lyskov N, Sadovskaya E, Cherepanova S, Eremeev N, Skazka V, Goncharov V, Kharitonova E. Oxygen diffusion in Mg-doped Sm and Gd zirconates with pyrochlore structure. Ionics. 2020;26(9):4621–33. doi:10.1007/s11581-020-03614-5

Eremeev NF, Bespalko YuN, Sadovskaya EM, Skriabin PI, Krieger TA, Ishchenko AV, Sadykov VA. Structural and transport properties of Nd tungstates and their composites with Ni0.5Cu0.5O obtained by mechanical activation. Dalton Trans. 2022;51(19):7705–14. doi:10.1039/d2dt00498d

Raj AKV, Prabhakara Rao P, Sreena TS, Aju Thara TR. Pigmentary colors from yellow to red in Bi2Ce2O7 by rare earth ion substitutions as possible high NIR reflecting pigments, Dyes Pigm. 2019;160:177–87. doi:10.1016/j.dyepig.2018.08.010

Pikalova E, Sadykov V, Tsvinkinberg V, Kolchugin A, Zhulanova T, Guseva E, Eremeev N, Sadovskaya E, Belyaev V, Filonova E. Boosting the oxygen transport kinetics and functional properties of La2NiO4+δ via partial La-to-Sm substitution. J Alloys Compd. 2024;980:173648. doi:10.1016/j.jallcom.2024.173648

Sadykov VA, Sadovskaya EM, Pikalova EYu, Kolchugin AA, Filonova EA, Pikalov SM, Eremeev NF, Ishchenko AV, Lukashevich AI, Bassat JM. Transport features in layered nickelates: Correlation between structure, oxygen diffusion, electrical and electrochemical properties. Ionics. 2018;24(4):1181–93. doi:10.1007/s11581-017-2279-3

Wang L, Merkle R, Maier J, Acartürk T, Starke U. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films. Appl Phys Lett. 2009;94(7):071908. doi:10.1063/1.3085969

Liu Y, Wang M, Shen M, Wang Q, Zhang L. Bi-doped ceria with increased oxygen vacancy for enhanced CO2 photoreduction performance. J Inorg Mater. 2021;36(1):88–94. doi:10.15541/jim20200142

Sadykov VA, Pavlova SN, Vinokurov ZS, Shmakov AN, Eremeev NF, Fedorova YuE, Yakimchuk EP, Kriventsov VV, Bolotov VA, Tanashev YuYu, Sadovskaya EM, Cherepanova SV, Zolotarev KV. Application of SR methods for the study of nanocomposite materials for hydrogen energy. Phys Procedia. 2016;84:397–406. doi:10.1016/j.phpro.2016.11.068

Krynski M, Wrobel W, Dygas JR, Wrobel J, Malys M, Śpiewak P, Kurzydlowski KJ, Krok F, Abrahams I. Ab-initio molecular dynamics simulation of δ Bi3YO6. Solid State Ionics. 2013;245–6:43–8. doi:10.1016/j.ssi.2013.05.015

Asif SU, Wang J, Qian Y, Gao D, Bashir R, Bilal MK, Ahmad J, Qadeer Awan M, Hu W. Phonon vibrations and photoluminescence emissions and their correlations with the electrical properties in Er3+ doped Bi3YO6 oxide-ion conductors. Solid State Ionics. 2020;344:115092. doi:10.1016/j.ssi.2019.115092

Krynski M, Wrobel W, Mohn CE, Dygas JR, Malys M, Krok F, Abrahams I. Trapping of oxide ions in δ-Bi3YO6. Solid State Ionics. 2014;264:49–53. doi:10.1016/j.ssi.2014.06.019

Murch GE. The Nernst–Einstein equation in high-defect-content solids. Philos Mag A 1982;45(4):685–92. doi:10.1080/01418618208236198

Murch GE. The Haven Ratio in fast ionic conductors. Solid State Ionics. 1982;7(3):177–98. doi:10.1016/0167-2738(82)90050-9

Akbar SA. A generalized view of the correlation factor in solid-state diffusion. J Appl Phys. 1994;75(6):2851–6. doi:10.1063/1.356178

Poirier DR, Geiger GH. Fick’s law and diffusivity of materials. In: Transport Phenomena in Materials Processing. Springer, Cham; 2016. pp. 419–61. doi:10.1007/978-3-319-48090-9_12

Sasaki R, Tateyama Y, Searles DJ. Constant-current nonequilibrium molecular dynamics approach for accelerated computation of ionic conductivity including ion-ion correlation. PRX Energy. 2025;4:013005. doi:10.1103/PRXEnergy.4.013005

Pang M C, Marinescu M, Wang H, Offer G. Mechanical behaviour of inorganic solid-state batteries: Can we model the ionic mobility in the electrolyte with Nernst–Einstein’s relation? Phys Chem Chem Phys. 2023;23(48):27159–70. doi:10.1039/D1CP00909E

De Souza RA. Oxygen diffusion in SrTiO3 and related perovskite oxides. Adv Funct Mater. 2015;25(40):6326–42. doi:10.1002/adfm.201500827

Shao Y, Shigenobu K, Watanabe M, Zhang C. Role of viscosity in deviations from the Nernst–Einstein relation. J Phys Chem B. 2020;124(23):4774–80. doi:10.1021/acs.jpcb.0c02544




DOI: https://doi.org/10.15826/chimtech.9074

Copyright (c) 2025 Nikita Eremeev, Semyon Mironov, Ekaterina Sadovskaya, Tamara Krieger, Arcady Ishchenko, Artyom Ulikhin, Vladislav Sadykov, Yulia Bespalko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice