Cover Image

Li6.6Al0.05La3Zr1.75Nb0.25O12 thin film solid electrolyte synthesized by electrophoretic deposition

Efim Lyalin, Evgeniya Il’ina, Elena Kalinina

Abstract


The development of solid-state lithium-ion power sources is currently hindered by technological barriers including high resistance at the interface between the solid electrolyte and electrodes and complex manufacturing process. Thin films of solid electrolyte reduce ionic resistance by minimizing structural defects and increasing the contact area between the electrodes and the electrolyte. The present work investigates the structure, morphology and lithium-ion conductivity of Li6.6Al0.05La3Zr1.75Nb0.25O12 films synthesized on a Ti substrate by electrophoretic deposition. The effect of the pre-synthesis processing of the solid electrolyte powder on the final film properties is studied by comparing initial powders of Li6.6Al0.05La3Zr1.75Nb0.25O12 solid electrolyte annealed at a final temperature of 900 °C and 1150 °C. It is shown that milling the initial solid electrolyte powder improves the structure of the final film. The films had a homogenous structure with a thickness of 40–60 μm. The film produced from the powder with the final annealing temperature of 1150 °C and annealed at 300 °C delivered the highest conductivity among the samples investigated (3.4·10–6 S·cm–1 and 4.5·10–5 S·cm–1 for through- and in-plane conductivity, respectively, at 300 °C).

Keywords


Li7La3Zr2O12; solid electrolyte; electrophoretic deposition; thin film; all-solid-state battery

Full Text:

PDF

References


Parameswaran AK, Azadmanjiri J, Palaniyandy N, Pal B, Palaniswami S, Dekanovsky L, Wu B, Sofer Z. Recent progress of nanotechnology in the research framework of all-solid-state batteries. Nano Energy. 2023;105:107994. doi:10.1016/j.nanoen.2022.107994

Gicha BB, Tufa LT, Nwaji N, Hu X, Lee J. Advances in All-Solid-State Lithium–Sulfur Batteries for Commercialization. Nano-Micro Lett. 2024;16:172. doi:10.1007/s40820-024-01385-6

Joshi A, Mishra DK, Singh R, Zhang J, Ding Y. A comprehensive review of solid-state batteries. Appl Energy. 2025;386:125546. doi:10.1016/j.apenergy.2025.125546

Liu F, Gao L, Zhang Z, Zhang L, Deng N, Zhao Y, Kang W. Interfacial Challenges, processing strategies, and composite applications for high voltage all-solid-state lithium batteries based on halide and sulfide solid-state electrolytes. Energy Storage Mater. 2024;64:103072. doi:10.1016/j.ensm.2023.103072

Wu J, Yuan L, Zhang W, Li Z, Xie X, Huang Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ Sci. 2021;14:12–36. doi:10.1039/D0EE02241A

Yang G, Abraham C, Ma Y, Lee M, Helfrick E, Oh D, Lee D. Advances in materials design for all-solid-state batteries: from bulk to thin films. Appl Sci. 2020;10:4727. doi:10.3390/app10144727

Umair M, Zhou S, Li W, Rana HTH, Yang J, Cheng L, Li M, Yu S, Wei J. Oxide Solid Electrolytes in Solid-State Batteries. Batter. Supercaps. 2024;8:e202400667. doi:10.1002/batt.202400667

Wang YA, Yin L, Luo CW, He GH. Advances in Inorganic Solid Electrolytes: A Mini Review. JOM. 2024;76:1131–1142. doi:10.1007/s11837-023-06104-x

Aziam H, Larhrib B, Hakim C, Sabi N, Youcef HB, Saadoune I. Solid-state electrolytes for beyond lithium-ion batteries: A review. Renew Sustain Energy Rev. 2022;167:112694. doi:10.1016/j.rser.2022.112694

Murugan R, Thangadurai V, Weppner W. Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12. Angew Chem Int Ed. 2007:46:7778–7781. doi:10.1002/anie.200701144

Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci. 2017;88:325–411. doi:10.1016/j.pmatsci.2017.04.007

Han Y, Chen Y, Huang Y, Zhang M, Li Z, Wang Y. Recent progress on garnet-type oxide electrolytes for all-solid-state lithium-ion batteries. Ceram Int. 2023:49(18):29375. doi:10.1016/j.ceramint.2023.06.153

Zhao J, Wang X, Wei T, Zhang Z, Liu G, Yu W, Dong X, Wang J. Current challenges and perspectives of garnet-based solid-state electrolytes. J Energy Storage. 2023:68:107693. doi:10.1016/j.est.2023.107693

Il’ina EA, Lyalin ED, Antonov BD, Pankratov AA, Vovkotrub EG. Sol-gel synthesis of Al-and Nb-co-doped Li7La3Zr2O12 solid electrolytes. Ionics. 2020;26:3239-3247. doi:10.1007/s11581-020-03492-x

Han J, Vu A, Kim JJ, Gim J, Croy JR, Lee TH, Lee E. Room-temperature fabrication of garnet-type solid-electrolyte: optimizing particle size for high ionic conductivity. Chem Eng J. 2024;481:148645. doi:10.1016/j.cej.2024.148645

Singh JP, Paidi AK, Lee S. Growth strategies of Li7La3Zr2O12 electrolytes for Li-ion thin film battery. Chem Eng J Adv. 2023;16:100532. doi:10.1016/j.ceja.2023.100532

Zhu Y, Wu S, Pan Y, Zhang X, Yan Z, Xiang Y. Reduced Energy Barrier for Li+ Transport Across Grain Boundaries with Amorphous Domains in LLZO Thin Films. Nanoscale Res Lett. 2020;15:153. doi:10.1186/s11671-020-03378-x

Tadanaga K, Egawa H, Hayashi A, Tatsumisago M, Mosa J, Aparicio M, Duran A. Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol-gel process. J Power Sources. 2015:273:844–847. doi:10.1016/j.jpowsour.2014.09.164

Lyalin ED, Il’ina E. Progress in forming thin-film solid electrolytes based on Li7La3Zr2O12 by tape casting. Electrochem Mater Technol. 2024;3:20243043. doi:10.15826/elmattech.2024.3.043

Jonson RA, Yi E, Shen F, Tucker MC. Optimization of TapeCasting for Fabrication of Li6.25Al0.25La3Zr2O12 Sheets. Energy Fuels. 2021:35(10):8982-8990. doi:10.1021/acs.energyfuels.1c00566

Jonson RA, McGinn PJ. Tape casting and sintering of Li7La3Zr1.75Nb0.25Al0.1O12 with Li3BO3 additions. Solid State Ion. 2018:323:49-55. doi:10.1016/j.ssi.2018.05.015

Lyalin E, Il’ina E, Pankratov A, Kuznetsova T, Kalinina E. Effect of the substrate on the physicochemical properties of Li7La3Zr2O12 films obtained by Electrophoretic Deposition. Micromachines. 2023;14:2153. doi:10.3390/mi14122153

Kalinina EG, Pikalova EY. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: Theoretical approaches, experimental solutions and development prospects. Russ Chem Rev. 2019;88:1179–1219. doi:10.1070/RCR4889

Sastre J, Priebe A, Döbeli M, Michler J, Tiwari AN, Romanyuk YE. Lithium Garnet Li7La3Zr2O12 Electrolyte for All-Solid-State Batteries: Closing the Gap between Bulk and Thin Film Li-Ion Conductivities. Adv Mater Interf. 2020:7(17):2000425. doi:10.1002/admi.202000425




DOI: https://doi.org/10.15826/chimtech.9073

Copyright (c) 2025 Efim Lyalin, Evgeniya Il’ina, Elena Kalinina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice