Evaluation of particle size effect on two-phase flow distri-bution in a hydrotreatment reactor guard bed using parti-cle-resolved CFD simulations
Abstract
Keywords
Full Text:
PDFReferences
Speight JG. Fouling in refineries. Elsevier; 2015. 522 p.
Mik IA, Klenov OP, Kazakov M.O., Nadeina KA, Klimov OV, Noskov AS. Optimization of Grading Guard Systems for Trapping of Particulates to Prevent Pressure Drop Buildup in Gas Oil Hydrotreater. Fuel. 2021;285(119149):1–12. doi:10.1016/j.fuel.2020.119149
Schmidt M, Rasmussen H. Guarding against contaminants. Catalysis. 2016; 19–24. www.digitalrefining.com/article/1001244, Accessed on 15 August 2025
Cundall, PA, Strack, ODL. A Discrete Numerical Model for Granular Assemblies. Geotechnique. 1979;29:47–65. doi:10.1680/geot.1979.29.1.47
Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chem Eng J. 2011;166:324–331. doi:10.1016/j.cej.2010.10.053
Dixon AG, Walls G, Stanness H, Nijemeisland M, Stitt EH. Experimental validation of high reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube. Chem Eng J. 2012;200–202:344–356. doi:10.1016/j.cej.2012.06.065
Icardi M, Boccardo G, Marchisio DL. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media. Phys Rev. 2014;013032:1–13. doi:10.1103/PhysRevE.90.013032
Jurtz N, Kraume M, Wehinger GD. Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Rev Chem Eng. 2018;35(2):139–190. doi:10.1515/revce-2017-0059
Zhu H, Zhou Z, Yang R, Yu A. Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci. 2007;62:3378–3396. doi:10.1016/j.ces.2006.12.089
Eppinger T, Wehinger GD, Jurtz N, Aglave R, Kraume M. A numerical optimization study on the catalytic dry reforming of methane in a spatially resolved fixed-bed reactor. Chem Eng Res Design. 2016;115:374–381. doi:10.1016/j.cherd.2016.09.007
Boccardo G, Augier F, Haroun Y, Ferré D, Marchisio DL. Validation of a novel open-source work-flow for the simulation of packed-bed reactors. Chem Eng J. 2015;279:809–820. doi:10.1016/j.cej.2015.05.032
Fogouang LM, André L, Soulaine C. Particulate transport in porous media at pore-scale. Part 1: Unresolved-resolved four-way coupling CFD-DEM. J Computat Phys. 2025;521;113540. doi:10.1016/j.jcp.2024.113540
Flaischlen S, Wehinger GD. Synthetic Packed-Bed Generation for CFD Simulations: Blender vs. STAR-CCM+. ChemEngineering. 2019;3(52):1–22. doi:10.3390/chemengineering3020052
Partopour B, Dixon AG. An integrated workflow for resolved-particle packed bed models with complex particle shapes. Powder Technol. 2017;322:258–272. doi:10.1016/j.powtec.2017.09.009
Wehinger GD, Flaischlen S. CFD modeling of radiation in a steam methane reforming fixed-bed reactor. Ind Eng Chem Res. 2019;58:14410-14423. doi:10.1021/acs.iecr.9b01265
Xu C, Ju F, Zheng X. Computational Fluid Dynamics Modelling of Fixed-Bed Reactors Using Particle-Resolved Approach. Processes. 2025;13(6);1820. doi:10.3390/pr13061820
Kutscherauer M, Wehinger GD. Particle-Resolved CFD Simulation of Diluted Catalytic Fixed Bed Reactors for Formaldehyde Production. ACS Eng. 2025;5(3):284−297. doi:10.1021/acsengineeringau.5c00012
Bouras H, Haroun Y, Bodziony FF. Use of CFD for pressure drop, liquid saturation and wetting predictions in trickle bed reactors for different catalyst particle shapes. Chem Eng Sci. 2022;249;117315. doi:10.1016/j.ces.2021.117315
Augier F, Idoux F, Delenne J. Numerical simulations of transfer and transport properties inside packed beds of spherical particles. Chem Eng Sci. 2010;65:1055–1064. doi:10.1016/j.ces.2009.09.059
Dixon AG, Nijemeisland M, Stitt EH. Systematic mesh development for 3D CFD simulation of fixed beds: contact points study. Comp Chem Eng. 2013;48:135–153. doi:10.1016/j.compchemeng.2012.08.011
Ookawara S, Kuroki M, Street D, Ogawa K. High-fidelity DEM-CFD modeling of packed bed reactors for process intensification. Proceedings of European Congress of Chemical Engineering (ECCE-6), Copenhagen, 2007. 1–11.
Wehinger GD, Fütterer C, Kraume M. Contact modifications for CFD simulations of fixed-bed reactors: cylindrical particles. Ind Eng Chem Res. 2017;56:87–99. doi:10.1021/acs.iecr.6b03596
Wehinger GD, Kraume M, Berg V, Korup O, Mette K, Schlögl R, Behrens M, Horn R. Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AIChE J 2016;62:4436–4452. doi:10.1002/aic.15520
Slavin A, Arcas V, Greenhalgh C, Irvine E, Marshall D. Theoretical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature. Int J Heat Mass Transfer. 2002:45:4151–4161. doi:10.1016/S0017-9310(02)00117-5
Moghaddam EM, Foumeny EA, Stankiewicz AI, Padding JT. Hydrodynamics of narrow-tube fixed bed reactors filled with Raschig rings. Chem Eng Sci. 2020;5. doi:10.1016/j.cesx.2020.100057
Mik IA. et al. Guard of hydrotreating catalysts of oil fractions from solid particulates: experimental studies and calculation. Catalysis Industry. 2024;16(3):330–338. doi:10.1134/S207005042470017X
Ancheyta J, Muñoz JAD, Macías MJ. Experimental and theoretical determination of the particle size of hydrotreating catalysts of different shapes. Catal Today. 2005;109(1–4):120–127. doi:10.1016/j.cattod.2005.08.009
Fluent. Version 6.1. Fluent Inc., Lebanon, New Hampshire, 2003. 462 p.
Felder RM. Catalytic reactor design, by M. Orhan Tarhan. McGraw-Hill. 1983. doi:10.1002/aic.690300127
Macías MJ, Ancheyta J. Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes. Catal. Today. 2004:98(1):243–252. doi:10.1016/j.cattod.2004.07.038
DOI: https://doi.org/10.15826/chimtech.9072
Copyright (c) 2025 Ivan A. Mik, Oleg P. Klenov, Ivan S. Golubev, Pavel P. Dik, Sergey I. Reshetnikov, Alexandr S. Noskov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice






