Cover Image

Evaluation of particle size effect on two-phase flow distri-bution in a hydrotreatment reactor guard bed using parti-cle-resolved CFD simulations

Ivan A. Mik, Oleg P. Klenov, Ivan S. Golubev, Pavel P. Dik, Sergey I. Reshetnikov, Alexandr S. Noskov

Abstract


Trickle bed reactors with solid catalyst pellets are important and widely used large-scale apparatuses in the chemical and oil refining industries. In order to reduce the effects of poisons on the catalyst bed and to extend the catalyst loading service life as much as possible, guard beds are loaded onto the main catalyst bed, intended for deposition of fine impurities on them, conversion, binding of catalytic poisons and distribution flow. In this research, realistic loadings of guard bed catalyst pellets were constructed. We demonstrated that the process of studying the features of the hydrodynamic structure of the flow proposed in this work can be used to investigate the flow distribution and hydrodynamic resistance in hydroprocessing reactors. The particles are considered to be Raschig Rings 8 and 16 mm (outer diameter and height) with wall thickness of 1, 2 and 3 mm. The effect of particle size on flow distribution was studied using the standard deviation criterion. Based on this criterion, it was found that the loading of Raschig rings with wall thickness of 1 mm is optimal.

Keywords


hydrotreating; guard-bed; distribution flow; pressure drop; optimal catalyst pellet

Full Text:

PDF

References


Speight JG. Fouling in refineries. Elsevier; 2015. 522 p.

Mik IA, Klenov OP, Kazakov M.O., Nadeina KA, Klimov OV, Noskov AS. Optimization of Grading Guard Systems for Trapping of Particulates to Prevent Pressure Drop Buildup in Gas Oil Hydrotreater. Fuel. 2021;285(119149):1–12. doi:10.1016/j.fuel.2020.119149

Schmidt M, Rasmussen H. Guarding against contaminants. Catalysis. 2016; 19–24. www.digitalrefining.com/article/1001244, Accessed on 15 August 2025

Cundall, PA, Strack, ODL. A Discrete Numerical Model for Granular Assemblies. Geotechnique. 1979;29:47–65. doi:10.1680/geot.1979.29.1.47

Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chem Eng J. 2011;166:324–331. doi:10.1016/j.cej.2010.10.053

Dixon AG, Walls G, Stanness H, Nijemeisland M, Stitt EH. Experimental validation of high reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube. Chem Eng J. 2012;200–202:344–356. doi:10.1016/j.cej.2012.06.065

Icardi M, Boccardo G, Marchisio DL. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media. Phys Rev. 2014;013032:1–13. doi:10.1103/PhysRevE.90.013032

Jurtz N, Kraume M, Wehinger GD. Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Rev Chem Eng. 2018;35(2):139–190. doi:10.1515/revce-2017-0059

Zhu H, Zhou Z, Yang R, Yu A. Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci. 2007;62:3378–3396. doi:10.1016/j.ces.2006.12.089

Eppinger T, Wehinger GD, Jurtz N, Aglave R, Kraume M. A numerical optimization study on the catalytic dry reforming of methane in a spatially resolved fixed-bed reactor. Chem Eng Res Design. 2016;115:374–381. doi:10.1016/j.cherd.2016.09.007

Boccardo G, Augier F, Haroun Y, Ferré D, Marchisio DL. Validation of a novel open-source work-flow for the simulation of packed-bed reactors. Chem Eng J. 2015;279:809–820. doi:10.1016/j.cej.2015.05.032

Fogouang LM, André L, Soulaine C. Particulate transport in porous media at pore-scale. Part 1: Unresolved-resolved four-way coupling CFD-DEM. J Computat Phys. 2025;521;113540. doi:10.1016/j.jcp.2024.113540

Flaischlen S, Wehinger GD. Synthetic Packed-Bed Generation for CFD Simulations: Blender vs. STAR-CCM+. ChemEngineering. 2019;3(52):1–22. doi:10.3390/chemengineering3020052

Partopour B, Dixon AG. An integrated workflow for resolved-particle packed bed models with complex particle shapes. Powder Technol. 2017;322:258–272. doi:10.1016/j.powtec.2017.09.009

Wehinger GD, Flaischlen S. CFD modeling of radiation in a steam methane reforming fixed-bed reactor. Ind Eng Chem Res. 2019;58:14410-14423. doi:10.1021/acs.iecr.9b01265

Xu C, Ju F, Zheng X. Computational Fluid Dynamics Modelling of Fixed-Bed Reactors Using Particle-Resolved Approach. Processes. 2025;13(6);1820. doi:10.3390/pr13061820

Kutscherauer M, Wehinger GD. Particle-Resolved CFD Simulation of Diluted Catalytic Fixed Bed Reactors for Formaldehyde Production. ACS Eng. 2025;5(3):284−297. doi:10.1021/acsengineeringau.5c00012

Bouras H, Haroun Y, Bodziony FF. Use of CFD for pressure drop, liquid saturation and wetting predictions in trickle bed reactors for different catalyst particle shapes. Chem Eng Sci. 2022;249;117315. doi:10.1016/j.ces.2021.117315

Augier F, Idoux F, Delenne J. Numerical simulations of transfer and transport properties inside packed beds of spherical particles. Chem Eng Sci. 2010;65:1055–1064. doi:10.1016/j.ces.2009.09.059

Dixon AG, Nijemeisland M, Stitt EH. Systematic mesh development for 3D CFD simulation of fixed beds: contact points study. Comp Chem Eng. 2013;48:135–153. doi:10.1016/j.compchemeng.2012.08.011

Ookawara S, Kuroki M, Street D, Ogawa K. High-fidelity DEM-CFD modeling of packed bed reactors for process intensification. Proceedings of European Congress of Chemical Engineering (ECCE-6), Copenhagen, 2007. 1–11.

Wehinger GD, Fütterer C, Kraume M. Contact modifications for CFD simulations of fixed-bed reactors: cylindrical particles. Ind Eng Chem Res. 2017;56:87–99. doi:10.1021/acs.iecr.6b03596

Wehinger GD, Kraume M, Berg V, Korup O, Mette K, Schlögl R, Behrens M, Horn R. Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AIChE J 2016;62:4436–4452. doi:10.1002/aic.15520

Slavin A, Arcas V, Greenhalgh C, Irvine E, Marshall D. Theoretical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature. Int J Heat Mass Transfer. 2002:45:4151–4161. doi:10.1016/S0017-9310(02)00117-5

Moghaddam EM, Foumeny EA, Stankiewicz AI, Padding JT. Hydrodynamics of narrow-tube fixed bed reactors filled with Raschig rings. Chem Eng Sci. 2020;5. doi:10.1016/j.cesx.2020.100057

Mik IA. et al. Guard of hydrotreating catalysts of oil fractions from solid particulates: experimental studies and calculation. Catalysis Industry. 2024;16(3):330–338. doi:10.1134/S207005042470017X

Ancheyta J, Muñoz JAD, Macías MJ. Experimental and theoretical determination of the particle size of hydrotreating catalysts of different shapes. Catal Today. 2005;109(1–4):120–127. doi:10.1016/j.cattod.2005.08.009

Fluent. Version 6.1. Fluent Inc., Lebanon, New Hampshire, 2003. 462 p.

Felder RM. Catalytic reactor design, by M. Orhan Tarhan. McGraw-Hill. 1983. doi:10.1002/aic.690300127

Macías MJ, Ancheyta J. Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes. Catal. Today. 2004:98(1):243–252. doi:10.1016/j.cattod.2004.07.038




DOI: https://doi.org/10.15826/chimtech.9072

Copyright (c) 2025 Ivan A. Mik, Oleg P. Klenov, Ivan S. Golubev, Pavel P. Dik, Sergey I. Reshetnikov, Alexandr S. Noskov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice