Ce2Sn2O7/CNFs composite as a material for gas sensors and supercapacitors
Abstract
Keywords
Full Text:
PDFReferences
Huang H, Miao X, Liao N, Wang L, Jin D. Study on the oxygen exchange capacities of Ce2Sn2O7 pyrochlore. Russ J Inorg Chem. 2011;56(10):1621–1624. doi:10.1134/S0036023611100093
Ganesan M, Jayaraman V, Prabakaran S, Mani KM, Kim D-H. Pyrochlore cerium stannate (Ce2Sn2O7) for highly sensitive NO2 gas sensing at room temperature. Appl Surf Sci. 2023;624:157135. doi:10.1016/j.apsusc.2023.157135
Zhang W, Hu J, Zhu D, Gu L, Cheng M, Wei T, Liu Q, Wang R, Li W, Ling Y, Liu B. In-situ electrochemical deposition of PPy- Ce2Sn2O7 for highly sensitive detection of NH3 and humidity at room temperature. Talanta. 2025;288:127752, doi:10.1016/j.talanta.2025.127752
Xu J, Wang D, Kong S, Li R, Hong Z, Huang F. Pyrochlore phase Ce2Sn2O7 via an atom-confining strategy for reversible lithium storage. J Mater Chem. A. 2020;8:5744–5749. doi:10.1039/C9TA13602A
Wu Q, Liu Y, Wang H-G, Hou J, Li Y, Duan Q. Graphene encapsulated metallic state Ce2Sn2O7 as a novel anode material for superior lithium-ion batteries and capacitors. J Mater Chem A. 2020;8:5517–5524. doi:10.1039/C9TA13086A
Jiang T, Wu F, Ren Y, Qiu J, Chen Z. Pyrochlore phase (Y, Dy, Ce, Nd, La)2Sn2O7 as a superb anode material for lithium‑ion batteries. J Solid State Electrochem. 2023;27:763–772. doi:10.1007/s10008-022-05369-7
Bie Y, Li T, Li F. Hydrothermal synthesis of Ce2Sn2O7 nanoparticles for effective sonocatalytic performance. Ceram Int. 2023;49(14):22726–22735. doi:10.1016/j.ceramint.2023.04.049
Jayaraman V, Mani A. Optical, photocatalytic properties of novel pyro- stannate A2Sn2O7 (A = Ce, Ca, Sr), and Pt deposited (SrCe)2Sn2O7 for the removal of organic pollutants under direct solar light irradiation. Mater Sci Semicond Process. 2019;104:104647. doi:10.1016/j.mssp.2019.104647
Jayaraman V, Palanivel B, Ayappan C, Chellamuthu M, Mani A. CdZnS solid solution supported Ce2Sn2O7 pyrochlore photocatalyst that proves to be an efficient candidate towards the removal of organic pollutants. Sep Sci Technol. 2019;224:405–420. doi:10.1016/j.seppur.2019.05.047
Khan MS, Ameer H, Chi Y. Label-Free and Ultrasensitive Electrochemiluminescent Immunosensor Based on Novel Luminophores of Ce2Sn2O7 Nanocubes Anal Chem. 2021;93(7):3618–3625. doi:10.1021/acs.analchem.0c05315
Huo Y, Qin N, Liao C, Feng H, Gu Y, Cheng H. Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes. J Cent South Univ. 2019;26(6):1416–1425. doi:10.1007/s11771-019-4097-4
Shao X, Luo J, Gong Z, Sun X, Ma H, Wu D, Fan D, Li Y, Wei Q, Ju H. A quenching electrochemiluminescence immunosensor based on a novel Ag@ Ce2Sn2O7 luminophore for the detection of neuron-specific enolase. Sens Actuators B Chem. 2023;374:132810. doi:10.1016/j.snb.2022.132810
Powell M, Sanjeewa LD, McMillen CD, Ross KA, Sarkis CL, Kolis JW. Hydrothermal Crystal Growth of Rare Earth Tin Cubic Pyrochlores, RE2Sn2O7 (RE = La-Lu): Site Ordered, Low Defect Single Crystals. Cryst Growth Des. 2019;19(9):4920–4926. doi:10.1021/acs.cgd.8b01889
Pasupuleti KS, Vidyasagar D, Ambadi LN, Bak N, Kim SG, Kim MD. UV light activated g-C3N4 nanoribbons coated surface acoustic wave sensor for high performance sub-ppb level NO2 detection at room temperature. Sens Actuators B Chem. 2023;394:134471. doi:10.1016/j.snb.2023.134471
Zheng X, Hong X, Qiao X, Yang Y, Jiao S. Highly sensitive NO2 sensor based on mesoporous ZrO2–WO3 nanotubes composite. Mat Res Bull. 2023;167:112394. doi:10.1016/j.materresbull.2023.112394
Zhao T, Wang Ch, Dai L, Meng W, Liu Y, Li Y, Wang L. An Amperometric Type NO2 Sensor Utilizing La0.7Sr0.3MnO3−δ-NiO Composite Sensing Electrode. J Electrochem Soc. 2024;171(7):077514. doi:10.1149/1945-7111/ad6295
Wang W, Jiang W, Zhuang L. Highly sensitive and selective room temperature NO2 gas sensor based on 3D BiFeO3−x microflowers. Electron Mater Lett. 2025;21:102–110. doi:10.1007/s13391-024-00534-8
Sakai T , Takase S , Shimizu Y. An Impedancemetric Micro NO2 Sensor Using Oxide and Solid-Electrolyte Thin-Films. IEEJ Trans Sens Micromach. 2020;140(11):305–308. doi:10.1541/ieejsmas.140.305
Ganesan M, Jayaraman V, Selvaraj P, KM Mani, Kim D-H. Pyrochlore cerium stannate (Ce2Sn2O7) for highly sensitive NO2 gas sensing at room temperature. Appl Surf Sci. 2023;624:157135. doi:10.1016/j.apsusc.2023.157135
Ganesan M, Li J, Wang F. Highly Sensitive and Selective Room-Temperature NO2 Gas Sensor With Ce2Sn2O7/g-C3N4. IEEE Sens J. 2025;25(15):27997–28004. doi:10.1109/JSEN.2025.3581542
Shahid A, Hussain Sh, Liaqat MJ, Ibrahim TK, Alam MM, Hussien M, Manavalan RK, Zhang X, Liu G, Qiao G. Unlocking the potential of MoS2/CuO nanoarchitectures for acetone detection. Mater Sci Eng B. 2025;322:118646. doi:10.1016/j.mseb.2025.118646
Hussain Sh, Wang S, Amu-Darko JNO, Begi AN, Yusuf K, Ibrahim TK, Iqbal A, Manavalan RK, Zhang X, Qiao G. MOF-derived La-doped ZnO dodecahedron nanostructures for efficient detection of NO2 gas. Sens Actuators B Chem. 2025;425:136954. doi:10.1016/j.snb.2024.136954
Wanyun X, Xiaobo L, Teng T, Ali AS, Ahmad U, Okai AJN, Kumar MR, Shahid H. 2D CO3O4 nanosheets for high selectivity and response of H2S gas sensing performances. J Nanoelectronics Optoelectronics. 2024;19(11):1156–1164. doi:10.1166/jno.2024.3675
Ruan C, Tan Y, Lin Li, Wang J, Liu X, Wang X. A Novel CeO2–x SnO2/ Ce2Sn2O7 Pyrochlore Cycle for Enhanced Solar Thermochemical Water Splitting. Am Institute Chem Engin. 2017;63(8):3450–3462. doi:10.1002/aic.15701
Ryumin MA. Features of synthetic approaches to the production of stannates with a pyrochlore structure and the study of their thermodynamic properties. Transact Kоla Sci Centre RAS. Ser Engin Sci. 2022;13(1):213–216. doi:10.37614/2949-1215.2022.13.1.037
Sankar J, Kumar SS. Synthesis of Rare Earth Based Pyrochlore Structured (A2B2O7) Materials for Thermal Barrier Coatings (TBCs) - A Review. Curr Appl Sci Technol. 2021;21(3):601–617. doi:10.14456/cast.2021.47
Aparnev AI, Loginov AV, Bannov AG. Synthesis of copper-doped nanocrystalline tin stannate by thermal decomposition of a precursor. Chim Tech Acta. 2024;11(4):202411405. doi:10.15826/chimtech.2024.11.4.05
Ermakova MA, Ermakov DY, Chuvilin AL, Kuvshinov GG. Decomposition of methane over iron catalysts at the range of moderate temperatures: The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J Catal. 2001;201:183–197. doi:10.1006/jcat.2001.3243
Shukla AK, Banerjee A, Ravikumar MK, Jalajakshi A. Electrochemical capacitors: Technical challenges and prognosis for future Markets. Electrochim Acta. 2012;84:165–173. doi:10.1016/j.electacta.2012.03.059
Gupta HC, Brown S, Rani N, Gohel VB. A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Sn2O7 pyrochlores. Int J Inorg Mater. 2001;3(7):983–986. doi:10.1016/S1466-6049(01)00201-X
Kim YH, Kim SJ, Kim Y-J, Shim Y-S, Kim SY, Hong BH, Jang HW. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. ACS Nano. 2015;9(10):10453–10460. doi:10.1021/acsnano.5b04680
Cho B, Yoon J, Lim SK, Kim AR, Kim D-H, Park S-G, Kwon J-D, Lee Y-J, Lee K-H, Lee BH, Ko HC, Hahm MG. Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. ACS Appl Mater. Inter. 2015;7(30):16775-16780. doi:10.1021/acsami.5b04541
Xie T, Sullivan N, Steffens K, Wen B, Liu G, Debnath R, Davydov A, Gomez R, Motayed A. UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film. J Allow Compd. 2015:653;255-259. doi:10.1016/j.jallcom.2015.09.021
Zhang F, Lin Q, Han F, Wang Z, Tian B, Zhao L, Dong T, Jiang Z. A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsystems Nanoengin. 2022;8(1):40. doi:10.1038/s41378-022-00369-z
Golovakhin V, Litvinova VI, Manakhov A, Latypova AR, Novgorodtseva ON, Ukhina AV, Ishchenko AV, Al-Qasim AS, Maksimovskiy EA, Bannov AG. Conductive polymer-multi-walled carbon nanotube composites for gas sensors and supercapacitors. Mater Today Commun. 2024;39:109163. doi:10.1016/j.mtcomm.2024.109163
Brester AE, Golovakhin VV, Novgorodtseva ON, Lapekin NI, Shestakov AA, Popov MV, Bannov AG. Chemically treated carbon nanofiber materials for supercapacitors. Dokl Chem. 2021;501(2):264–269. doi:10.1134/S0012500821120016
Ashraf M, Almutairi BS, Arslan M, Alqorashi AK, Iqbal MW, Diab MA, Kumar A.Synthesis and investigations of MIL-101/ZnIn2S4@Zr2C hybrid composite for energy storage and hydrogen evolution reactions. Mater Chem Phys. 2025;345:131264. doi:10.1016/j.matchemphys.2025.131264
Khan Sh, Gouadria S, Al-Sehemi AG, Kumar A. Synthesis of an effective iron manganese oxide-cobalt oxide nanocomposite electrode for energy storage supercapacitors. Ceram Int. 2025;51(22):36054–36063. doi:10.1016/j.ceramint.2025.05.326
Zaman M, Elaissi S, Aldhafeeri TR, Ali SK, Kumar A. Development of NiFe2Se4/rGO composite electrode for enhanced supercapacitive performance. Ionics. 2025;31:7499–7511. doi:10.1007/s11581-025-06368-0
DOI: https://doi.org/10.15826/chimtech.9052
Copyright (c) 2025 Alexander I. Aparnev, Anton V. Loginov, Alexander G. Bannov, Oksana N. Novgorodtseva, Artem A. Shishin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice






