Cover Image

Ce2Sn2O7/CNFs composite as a material for gas sensors and supercapacitors

Alexander I. Aparnev, Anton V. Loginov, Alexander G. Bannov, Oksana N. Novgorodtseva, Artem A. Shishin

Abstract


Cerium stannate Ce2Sn2O7 was obtained by the hydrothermal method from a mixture of cerium (III) nitrate and sodium stannate solutions with the addition of sodium hydroxide solution to pH 8–9. The phase composition of the hydrothermal synthesis product was studied using thermal anlysis, X-ray diffraction, scanning electron microscopy and FTIR spectroscopy. It was found that at a synthesis temperature of 180 °C, a single-phase cerium stannate with a pyrochlore structure, the particles of which have a cubic shape of 2–5 μm in size, is formed. It was shown that the response of the Ce2Sn2O7/CNFs composite to NO2 at room temperature is 41% at 10 ppm. The composite material demonstrated the possibility of its application in supercapacitors, showing a specific capacitance of 165–200 F/g at 2 mV/s. It was found that the specific capacitance of the Ce2Sn2O7/CNFs composite significantly exceeds that of single-phase cerium stannate.

Keywords


cerium stannate; hydrothermal method; carbon nanofibers (CNFs); sensor; composite

Full Text:

PDF

References


Huang H, Miao X, Liao N, Wang L, Jin D. Study on the oxygen exchange capacities of Ce2Sn2O7 pyrochlore. Russ J Inorg Chem. 2011;56(10):1621–1624. doi:10.1134/S0036023611100093

Ganesan M, Jayaraman V, Prabakaran S, Mani KM, Kim D-H. Pyrochlore cerium stannate (Ce2Sn2O7) for highly sensitive NO2 gas sensing at room temperature. Appl Surf Sci. 2023;624:157135. doi:10.1016/j.apsusc.2023.157135

Zhang W, Hu J, Zhu D, Gu L, Cheng M, Wei T, Liu Q, Wang R, Li W, Ling Y, Liu B. In-situ electrochemical deposition of PPy- Ce2Sn2O7 for highly sensitive detection of NH3 and humidity at room temperature. Talanta. 2025;288:127752, doi:10.1016/j.talanta.2025.127752

Xu J, Wang D, Kong S, Li R, Hong Z, Huang F. Pyrochlore phase Ce2Sn2O7 via an atom-confining strategy for reversible lithium storage. J Mater Chem. A. 2020;8:5744–5749. doi:10.1039/C9TA13602A

Wu Q, Liu Y, Wang H-G, Hou J, Li Y, Duan Q. Graphene encapsulated metallic state Ce2Sn2O7 as a novel anode material for superior lithium-ion batteries and capacitors. J Mater Chem A. 2020;8:5517–5524. doi:10.1039/C9TA13086A

Jiang T, Wu F, Ren Y, Qiu J, Chen Z. Pyrochlore phase (Y, Dy, Ce, Nd, La)2Sn2O7 as a superb anode material for lithium‑ion batteries. J Solid State Electrochem. 2023;27:763–772. doi:10.1007/s10008-022-05369-7

Bie Y, Li T, Li F. Hydrothermal synthesis of Ce2Sn2O7 nanoparticles for effective sonocatalytic performance. Ceram Int. 2023;49(14):22726–22735. doi:10.1016/j.ceramint.2023.04.049

Jayaraman V, Mani A. Optical, photocatalytic properties of novel pyro- stannate A2Sn2O7 (A = Ce, Ca, Sr), and Pt deposited (SrCe)2Sn2O7 for the removal of organic pollutants under direct solar light irradiation. Mater Sci Semicond Process. 2019;104:104647. doi:10.1016/j.mssp.2019.104647

Jayaraman V, Palanivel B, Ayappan C, Chellamuthu M, Mani A. CdZnS solid solution supported Ce2Sn2O7 pyrochlore photocatalyst that proves to be an efficient candidate towards the removal of organic pollutants. Sep Sci Technol. 2019;224:405–420. doi:10.1016/j.seppur.2019.05.047

Khan MS, Ameer H, Chi Y. Label-Free and Ultrasensitive Electrochemiluminescent Immunosensor Based on Novel Luminophores of Ce2Sn2O7 Nanocubes Anal Chem. 2021;93(7):3618–3625. doi:10.1021/acs.analchem.0c05315

Huo Y, Qin N, Liao C, Feng H, Gu Y, Cheng H. Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes. J Cent South Univ. 2019;26(6):1416–1425. doi:10.1007/s11771-019-4097-4

Shao X, Luo J, Gong Z, Sun X, Ma H, Wu D, Fan D, Li Y, Wei Q, Ju H. A quenching electrochemiluminescence immunosensor based on a novel Ag@ Ce2Sn2O7 luminophore for the detection of neuron-specific enolase. Sens Actuators B Chem. 2023;374:132810. doi:10.1016/j.snb.2022.132810

Powell M, Sanjeewa LD, McMillen CD, Ross KA, Sarkis CL, Kolis JW. Hydrothermal Crystal Growth of Rare Earth Tin Cubic Pyrochlores, RE2Sn2O7 (RE = La-Lu): Site Ordered, Low Defect Single Crystals. Cryst Growth Des. 2019;19(9):4920–4926. doi:10.1021/acs.cgd.8b01889

Pasupuleti KS, Vidyasagar D, Ambadi LN, Bak N, Kim SG, Kim MD. UV light activated g-C3N4 nanoribbons coated surface acoustic wave sensor for high performance sub-ppb level NO2 detection at room temperature. Sens Actuators B Chem. 2023;394:134471. doi:10.1016/j.snb.2023.134471

Zheng X, Hong X, Qiao X, Yang Y, Jiao S. Highly sensitive NO2 sensor based on mesoporous ZrO2–WO3 nanotubes composite. Mat Res Bull. 2023;167:112394. doi:10.1016/j.materresbull.2023.112394

Zhao T, Wang Ch, Dai L, Meng W, Liu Y, Li Y, Wang L. An Amperometric Type NO2 Sensor Utilizing La0.7Sr0.3MnO3−δ-NiO Composite Sensing Electrode. J Electrochem Soc. 2024;171(7):077514. doi:10.1149/1945-7111/ad6295

Wang W, Jiang W, Zhuang L. Highly sensitive and selective room temperature NO2 gas sensor based on 3D BiFeO3−x microflowers. Electron Mater Lett. 2025;21:102–110. doi:10.1007/s13391-024-00534-8

Sakai T , Takase S , Shimizu Y. An Impedancemetric Micro NO2 Sensor Using Oxide and Solid-Electrolyte Thin-Films. IEEJ Trans Sens Micromach. 2020;140(11):305–308. doi:10.1541/ieejsmas.140.305

Ganesan M, Jayaraman V, Selvaraj P, KM Mani, Kim D-H. Pyrochlore cerium stannate (Ce2Sn2O7) for highly sensitive NO2 gas sensing at room temperature. Appl Surf Sci. 2023;624:157135. doi:10.1016/j.apsusc.2023.157135

Ganesan M, Li J, Wang F. Highly Sensitive and Selective Room-Temperature NO2 Gas Sensor With Ce2Sn2O7/g-C3N4. IEEE Sens J. 2025;25(15):27997–28004. doi:10.1109/JSEN.2025.3581542

Shahid A, Hussain Sh, Liaqat MJ, Ibrahim TK, Alam MM, Hussien M, Manavalan RK, Zhang X, Liu G, Qiao G. Unlocking the potential of MoS2/CuO nanoarchitectures for acetone detection. Mater Sci Eng B. 2025;322:118646. doi:10.1016/j.mseb.2025.118646

Hussain Sh, Wang S, Amu-Darko JNO, Begi AN, Yusuf K, Ibrahim TK, Iqbal A, Manavalan RK, Zhang X, Qiao G. MOF-derived La-doped ZnO dodecahedron nanostructures for efficient detection of NO2 gas. Sens Actuators B Chem. 2025;425:136954. doi:10.1016/j.snb.2024.136954

Wanyun X, Xiaobo L, Teng T, Ali AS, Ahmad U, Okai AJN, Kumar MR, Shahid H. 2D CO3O4 nanosheets for high selectivity and response of H2S gas sensing performances. J Nanoelectronics Optoelectronics. 2024;19(11):1156–1164. doi:10.1166/jno.2024.3675

Ruan C, Tan Y, Lin Li, Wang J, Liu X, Wang X. A Novel CeO2–x SnO2/ Ce2Sn2O7 Pyrochlore Cycle for Enhanced Solar Thermochemical Water Splitting. Am Institute Chem Engin. 2017;63(8):3450–3462. doi:10.1002/aic.15701

Ryumin MA. Features of synthetic approaches to the production of stannates with a pyrochlore structure and the study of their thermodynamic properties. Transact Kоla Sci Centre RAS. Ser Engin Sci. 2022;13(1):213–216. doi:10.37614/2949-1215.2022.13.1.037

Sankar J, Kumar SS. Synthesis of Rare Earth Based Pyrochlore Structured (A2B2O7) Materials for Thermal Barrier Coatings (TBCs) - A Review. Curr Appl Sci Technol. 2021;21(3):601–617. doi:10.14456/cast.2021.47

Aparnev AI, Loginov AV, Bannov AG. Synthesis of copper-doped nanocrystalline tin stannate by thermal decomposition of a precursor. Chim Tech Acta. 2024;11(4):202411405. doi:10.15826/chimtech.2024.11.4.05

Ermakova MA, Ermakov DY, Chuvilin AL, Kuvshinov GG. Decomposition of methane over iron catalysts at the range of moderate temperatures: The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J Catal. 2001;201:183–197. doi:10.1006/jcat.2001.3243

Shukla AK, Banerjee A, Ravikumar MK, Jalajakshi A. Electrochemical capacitors: Technical challenges and prognosis for future Markets. Electrochim Acta. 2012;84:165–173. doi:10.1016/j.electacta.2012.03.059

Gupta HC, Brown S, Rani N, Gohel VB. A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Sn2O7 pyrochlores. Int J Inorg Mater. 2001;3(7):983–986. doi:10.1016/S1466-6049(01)00201-X

Kim YH, Kim SJ, Kim Y-J, Shim Y-S, Kim SY, Hong BH, Jang HW. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. ACS Nano. 2015;9(10):10453–10460. doi:10.1021/acsnano.5b04680

Cho B, Yoon J, Lim SK, Kim AR, Kim D-H, Park S-G, Kwon J-D, Lee Y-J, Lee K-H, Lee BH, Ko HC, Hahm MG. Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. ACS Appl Mater. Inter. 2015;7(30):16775-16780. doi:10.1021/acsami.5b04541

Xie T, Sullivan N, Steffens K, Wen B, Liu G, Debnath R, Davydov A, Gomez R, Motayed A. UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film. J Allow Compd. 2015:653;255-259. doi:10.1016/j.jallcom.2015.09.021

Zhang F, Lin Q, Han F, Wang Z, Tian B, Zhao L, Dong T, Jiang Z. A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsystems Nanoengin. 2022;8(1):40. doi:10.1038/s41378-022-00369-z

Golovakhin V, Litvinova VI, Manakhov A, Latypova AR, Novgorodtseva ON, Ukhina AV, Ishchenko AV, Al-Qasim AS, Maksimovskiy EA, Bannov AG. Conductive polymer-multi-walled carbon nanotube composites for gas sensors and supercapacitors. Mater Today Commun. 2024;39:109163. doi:10.1016/j.mtcomm.2024.109163

Brester AE, Golovakhin VV, Novgorodtseva ON, Lapekin NI, Shestakov AA, Popov MV, Bannov AG. Chemically treated carbon nanofiber materials for supercapacitors. Dokl Chem. 2021;501(2):264–269. doi:10.1134/S0012500821120016

Ashraf M, Almutairi BS, Arslan M, Alqorashi AK, Iqbal MW, Diab MA, Kumar A.Synthesis and investigations of MIL-101/ZnIn2S4@Zr2C hybrid composite for energy storage and hydrogen evolution reactions. Mater Chem Phys. 2025;345:131264. doi:10.1016/j.matchemphys.2025.131264

Khan Sh, Gouadria S, Al-Sehemi AG, Kumar A. Synthesis of an effective iron manganese oxide-cobalt oxide nanocomposite electrode for energy storage supercapacitors. Ceram Int. 2025;51(22):36054–36063. doi:10.1016/j.ceramint.2025.05.326

Zaman M, Elaissi S, Aldhafeeri TR, Ali SK, Kumar A. Development of NiFe2Se4/rGO composite electrode for enhanced supercapacitive performance. Ionics. 2025;31:7499–7511. doi:10.1007/s11581-025-06368-0




DOI: https://doi.org/10.15826/chimtech.9052

Copyright (c) 2025 Alexander I. Aparnev, Anton V. Loginov, Alexander G. Bannov, Oksana N. Novgorodtseva, Artem A. Shishin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice