Cover Image

Removal of ceftriaxone using modified layered double hydroxide MgAl-LDH with Hylocereus costaricensis extract

Rabellia Juladika Sayeri, Fitri Suryani Arsyad, Mardiyanto Mardiyanto, Najma Annuria Fithri, Yulizah Hanifah, Aldes Lesbani

Abstract


The use of pharmaceutical products, especially the antibiotic ceftriaxone (CTX), is increasingly widespread and raises serious concerns due to its waste residues that pollute the environment. In this study, a layered double hydroxide (MgAl-LDH) material was modified using dragon fruit peel extract (Hylocereus costaricensis) to develop an adsorbent (MgAl-HC) for removing CTX antibiotic effluent from the aquatic environment. LDH was synthesized using the co-precipitation methodб and dragon fruit extract was obtained through maceration. Material characterization was performed using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analysis, and showed that modification with dragon fruit peel extract increased the specific surface area from 18.471 m²/g to 28.035 m²/g. The adsorption kinetics study revealed that the adsorption process followed the pseudo-second-order model and the isotherm analysis followed the Freundlich isotherm model with the maximum adsorption capacity (Qmax) reaching 322.580 mg/g. Regeneration tests showed that the MgAl-HC composite material could be reused for up to three cycles without any significant decrease in its adsorption capacity. These findings suggest that MgAl-HC composites have great potential as effective adsorbents for removing antibiotic effluents from aquatic environments.

Keywords


ceftriaxone; dragon fruit peel extract; LHD; adsorption isoterm; reusability

Full Text:

PDF

References


Alsuhaibani MA, Refat MS, Adam AMA, El-Desouky MG, El-Bindary AA. Enhanced adsorption of ceftriaxone antibiotics from water by mesoporous copper oxide nanosphere. Desalin Water Treat. 2023;281(234–248):29135. doi:10.5004/dwt.2023.29135

Yadav J, Sahu O, Marwah H. Bioadsorption of dye from textile effluent with surface response methodology. Mater Today Proc. 2022;(68):937–942 doi:10.1016/j.matpr.2022.07.295

Mahmoud ME, El-Ghanam AM, Mohamed RHA, Saad SR. Enhanced adsorption of Levofloxacin and Ceftriaxone antibiotics from water by assembled composite of nanotitanium oxide/chitosan/nano-bentonite. Mater Sci Eng C. 2020;108:110199. doi:10.1016/j.msec.2019.110199

Karungamye P, Rugaika A, Mtei K, Machunda R. A Review of Methods for Removal of Ceftriaxone from Wastewater. J Xenobiotics. 2022;12(3):223–235. doi:10.3390/jox12030017

Torvorapanit P, Kawang K, Chariyavilaskul P, Kerr SJ, Chatsuwan T, Nilaratanakul V. The In Vitro Efficacy of Activated Charcoal in Fecal Ceftriaxone Adsorption among Patients Who Received Intravenous Ceftriaxone. Antibiotics. 2023;12(1):1–11. doi:10.3390/antibiotics12010127

Badi YM, Azari A, Pasalari H, Esrafili A, Farzadkia M. Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. J Mol Liq. 2018;261:146–154. doi:10.1016/j.molliq.2018.04.019

Ravi P, Rajamuthiah N, Satyanarayana P, Rajesh P. Pharmaceutical waste management. Int J Pharm Res. 2020;12:3625–3630. doi:10.31838/ijpr/2020.SP2.434

Fraiha O, et al. Comprehensive review on the adsorption of pharmaceutical products from wastewater by clay materials. Desalin Water Treat. 2024;317:100114. doi:10.1016/j.dwt.2024.100114

Homagai PL, Poudel R, Poudel S, Bhattarai A. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon. 2023;8(4):09261. doi:10.1016/j.heliyon.2022.e09261

Dragos-Pinzaru OG, Lupu N, Chiriac H, Buema G. Exploring the Utilization of Magnetic Composite Materials for High-Risk Contaminant Removal from Wastewater by Adsorption and Catalytic Processes—A Review. Magnetochem. 2024;10(8). doi:10.3390/magnetochemistry10080057

Blinová L, Sirotiak M. Utilization of Waste-Based Sorbents for Removal of Pharmaceuticals from Water: A Review. Res Pap Fac Mater Sci Technol Slovak Univ Technol. 2021;29(48):22–36. doi:10.2478/rput-2021-0002

Normah N, Adhiyanti N, Sayeri RJ, Wijaya A. Efficient Adsorption of Cr ( VI ) from Aqueous Solutions Using Composites. Ind J Mater Res. 2024;2(2):28. doi:10.26554/ijmr.20242228

Palapa NR, Putra MBK, Musifa E, Yuliasari N, Adawiyah R. Preparation and Application of Biochar from Areca catechu L. Peel for. Indones J Environ Management Sustainability. 2024;9(1):28–35. doi:10.26554/ijems.2025.9.1.28-35

Yang F, Zhang S, Sun Y, Tsang DCW, Cheng K, and Ok YS. Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery. J Hazard Mater. 2019;365:665–673. doi:10.1016/j.jhazmat.2018.11.047

Karungamye PN. Methods used for removal of pharmaceuticals from wastewater: A review. Appl J Envir Eng Sci. 2020;6:412–428. doi:10.48422/IMIST.PRSM/ajees-v6i4.23828

Dehghani MH, et al. Recent advances on sustainable adsorbents for the remediation of noxious pollutants from water and wastewater: A critical review. Arab J Chem. 2023;16(12):105303. doi:10.1016/j.arabjc.2023.105303

Aslani CK, Amik O. Active Carbon/PAN composite adsorbent for uranium removal: Modeling adsorption isotherm data, thermodynamic and kinetic studies. Appl Radiat Isot. 2020;168:109474. doi:10.1016/j.apradiso.2020.109474.

Waliullah RW, et al. Optimization of toxic dye removal from contaminated water using chitosan-grafted novel nanocomposite adsorbent. J Mol Liq. 2023;388:122763. doi:10.1016/j.molliq.2023.122763

Obey G, Adelaide M, Ramaraj R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J Bioresour Bioprod. 2022;7(2):109–115. doi:10.1016/j.jobab.2021.12.001

Neolaka YAB, et al. Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater. J Mater Res Technol. 2022;18:2896–2909. doi:10.1016/j.jmrt.2022.03.153

Karimi Z, Rahbar-Kelishami A. Preparation of highly efficient and eco-friendly alumina magnetic hybrid nanosorbent from red mud: Excellent adsorption capacity towards nitrate. J Mol Liq. 2022;368:120751. doi:10.1016/j.molliq.2022.120751

Haider JB, et al. Efficient extraction of silica from openly burned rice husk ash as adsorbent for dye removal. J Clean Prod. 2022;380(2):135121. doi:10.1016/j.jclepro.2022.135121

Guan X, et al. Adsorption behaviors and mechanisms of Fe/Mg layered double hydroxide loaded on bentonite on Cd (II) and Pb (II) removal. J Colloid Interface Sci. 2022;612:572–583. doi:10.1016/j.jcis.2021.12.151

Meili L, et al. MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Appl Clay Sci. 2019;168:11–20. doi:10.1016/j.clay.2018.10.012

Altalhi AA, Mohamed EA, Negm NA. Recent advances in layered double hydroxide (LDH)-based materials: fabrication, modification strategies, characterization, promising environmental catalytic applications, and prospective aspects. Energy Adv. 2024;2136–2151. doi:10.1039/d4ya00272e

Yuliasari N, et al. Modification of Mg/Al-LDH Intercalated Metal Oxide (Mg/Al-Ni) to Improve the Performance of Methyl Orange and Methyl Red Dyes Adsorption Process. Sci Technol Indones. 2022;7(3):275–283. doi:10.26554/sti.2022.7.3.275-283

Ai N, Yan Q, Lai C, Wang Q, Ren J. Improving the adsorption capacity of amino-modified Mg-Al LDH using a combined DFT and experiment. J CO2 Util. 2023;71:102454. doi:10.1016/j.jcou.2023.102454

Ahmad N, Arsyad FS, Royani I, and Lesbani A. Charcoal activated as template Mg/Al layered double hydroxide for selective adsorption of direct yellow on anionic dyes. Results Chem. 2022;5:100766. doi:10.1016/j.rechem.2023.100766

Wibiyan S, Royani I, and Lesbani A. Synthesis and Performance of ZnAl @ Layered Double Hydroxide Composites with Eucheuma cottonii for Adsorption and Regeneration of Congo Red Dye. Indones J Environ Manag Sustain. 2023;8(3):126–134. doi:10.26554/ijems.2024.8.3.126-134

Zhang L, Tang S, Jiang C, Jiang X, Guan Y. Simultaneous and Efficient Capture of Inorganic Nitrogen and Heavy Metals by Polyporous Layered Double Hydroxide and Biochar Composite for Agricultural Nonpoint Pollution Control. ACS Appl Mater Interfaces. 2018;10(49):43013–43030. doi:10.1021/acsami.8b15049

Amri A, Wibiyan S, Wijaya A, Ahmad N, Mohadi R, Lesbani A. Efficient Adsorption of Methylene Blue Dye Using Ni/Al Layered Double Hydroxide-Graphene Oxide Composite. Bull Chem React Eng Catal. 2024;19(2):181–189. doi:10.9767/bcrec.20121

Jefri J, Fithri NA, Lesbani A. Enhanced Removal Efficiency of Malachite Green Dye Using Gambier Leaf Extract-Modified NiFe LDH Composites: A Study of Cationic Dye Adsorption. Bull Chem React Eng Catal. 2024;19(4):573–584. doi:10.9767/bcrec.20215

Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA. Engineered biochar supported layered double hydroxide-cellulose nanocrystals composite-: Synthesis, characterization and azo dye removal performance. Chemosphere. 2022;307:136054. doi:10.1016/j.chemosphere.2022.136054

Rohmatullaili, et al. Enhancing the performance of modified ZnAl LDH as hybrid catalyst-adsorbent on tetracycline removal under solar light irradiation. Inorg Chem Commun. 2024;161:112101. doi:10.1016/j.inoche.2024.112101

Tristanto NA, et al. Pectin extracted from red dragon fruit (Hylocereus polyrhizus) peel and its usage in edible film. Int J Biol Macromol. 2024;276(1):133804. doi:10.1016/j.ijbiomac.2024.133804

Raj GVSB, Dash KK. Microencapsulation of betacyanin from dragon fruit peel by complex coacervation: Physicochemical characteristics, thermal stability, and release profile of microcapsules. Food Biosci. 2022;49:101882. doi:10.1016/j.fbio.2022.101882

Abdulhameed AS, Al Omari RH, Bourchak M, Abdullah S, Abualhaija M, Algburi S. Bio-sourced multifunctional adsorbent of chitosan and adipic acid activated-dragon fruit peels for organic dye removal from water: Eco-friendly management and valorization of biomass. Biomass Bioenergy. 2024;190:107414. doi:10.1016/j.biombioe.2024.107414

Diyatri I, et al. Antibacterial effect of a gingival patch containing nano-emulsion of red dragon fruit peel extract on Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum assessed in vitro. J Oral Biol Craniofacial Res. 2023;13(3):386–391. doi:10.1016/j.jobcr.2023.03.011

Mkaddem H, Rosales E, Pazos M, Amor HB, Sanromán MA, Meijide J. Anti-inflammatory drug diclofenac removal by a synthesized MgAl layered double hydroxide. J Mol Liq. 2022;359:119207. doi:10.1016/j.molliq.2022.119207

Shabanian M, Hajibeygi M, Raeisi A. FTIR characterization of layered double hydroxides and modified layered double hydroxides. Elsevier Ltd. 2020. doi:10.1016/b978-0-08-101903-0.00002-7

Tan J, Zhou L. Two birds with one stone: One-pot hydrothermal treatment of dragon fruit peel to simultaneously prepare efficient biochar adsorbent and fluorescent carbon quantum dots. Ind Crops Prod. 2023;210:118086. doi:10.1016/j.indcrop.2024.118086

Irwansyah FS, et al. How to Read and Determine the Specific Surface Area of Inorganic Materials using the Brunauer-Emmett-Teller (BET) Method. ASEAN J Sci Eng. 2024;4(1):61–70. doi:10.17509/ajse.v4i1.60748

Budiana IGMN, et al. Synthesis, characterization and application of cinnamoyl C-phenylcalix[4]resorcinarene (CCPCR) for removal of Cr(III) ion from the aquatic environment. J Mol Liq. 2021;324:114776. doi:10.1016/j.molliq.2020.114776

Gadelhak Y, et al. Waste Valorization of a Recycled ZnCoFe Mixed Metal Oxide/Ceftriaxone Waste Layered Nanoadsorbent for Further Dye Removal. ACS Omega. 2022;7(48):44103–44115. doi:10.1021/acsomega.2c05528

Hakim YM, Vinsiah R, Fajri S. High Efficient of Ca/Al-Graphite for Removal of Direct Orange. Indones J Mater Res. 2023;1(1):15–22. doi:10.26554/ijmr.2023112

Revellame ED, Fortela DL, Sharp W, Hernandez R, Zappi ME. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean Eng Technol. 2020;1:100032. doi:10.1016/j.clet.2020.100032

Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. Surfactant Adsorption Isotherms: A Review. ACS Omega. 2021;6(48):32342–32348. doi:10.1021/acsomega.1c04661

Malhas R, Salah S, Alawadhi M. Utilizing eco-friendly shredded waste tires for oil spill cleanup: Adsorption isotherm and kinetic studies. J Environ Chem Eng. 2025;13(3):116133. doi:10.1016/j.jece.2025.116133

Ebelegi AN, Ayawei N, Wankasi D. Interpretation of Adsorption Thermodynamics and Kinetics. Open J Phys Chem. 2020;10(3):166–182. doi:10.4236/ojpc.2020.103010

Siregar PMSBN, Palapa NR, Wijaya A, Fitri ES, Lesbani A. Structural stability of Ni/Al layered double hydroxide supported on graphite and biochar toward adsorption of congo red. Sci Technol Indones. 2021;6(2):85–95. doi:10.26554/STI.2021.6.2.85-95

Rinawati, et al. Removal of ceftriaxone and ciprofloxacin antibiotics from aqueous solutions using graphene oxide derived from corn cob. Glob J Environ Sci Manag. 2024;10(2):573–588. doi:10.22035/gjesm.2024.02.10

Pinto PS, Lanza GD, Souza MN, Ardisson JD, Lago RM. Surface restructuring of red mud to produce FeOx(OH)y sites and mesopores for the efficient complexation/adsorption of β-lactam antibiotics. Environ Sci Pollut Res. 2018;25(7):6762–6771. doi:10.1007/s11356-017-1005-z

Pinto PS, Lanza GD, Ardisson JD, Lago RM. Controlled dehydration of Fe(OH)3 to Fe2O3: Developing mesopores with complexing iron species for the adsorption of β-lactam antibiotics. J Braz Chem Soc. 2019;30(2):310–317. doi:10.21577/0103-5053.20180179

Jafarzadeh N, Jaafari J, Moslemzadeh M, Taghavi K. A novel chitosan/graphene oxide nanocomposite functionalized with zirconium to remove dexamethasone and ceftriaxone from aqueous solutions: Response surface methodology, isotherm, kinetic and thermodynamic. J Water Process Eng. 2025;69:106722. doi:10.1016/j.jwpe.2024.106722

Bozorginia S, Jaafari J, Taghavi K, Ashrafi SD, Roohbakhsh E, Naghipour D, Biosorption of ceftriaxone antibiotic by Pseudomonas putida from aqueous solutions. Int J Environ Anal Chem. 2023;103(9):2067–2081. doi:10.1080/03067319.2021.1887858

Mohamed H, Mahmoud R, Abdelwahab A, Farghali AA, El-Ela FIA, Allah AE. Multifunctional ternary ZnMgFe LDH as an efficient adsorbent for ceftriaxone sodium and antimicrobial agent: sustainability of adsorption waste as a catalyst for methanol electro-oxidation. RSC Adv. 2023;13(37):26069–26088. doi:10.1039/d3ra03426g

Yadav J, Sahu O. Malachite green dye purification from effluent using synthesized ceramic clay: Characterisation; optimization and scale up. Ceram Int. 2023;49(15):24831–24851. doi:10.1016/j.ceramint.2023.05.010




DOI: https://doi.org/10.15826/chimtech.2025.12.3.07

Copyright (c) 2025 Fitri Suryani Arsyad, Mardiyanto, Najma Annuria Fithri, Aldes Lesbani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice