
Novel materials based on Ruddlesden–Popper phases for solid oxide fuel cells and oxygen separation membranes: Fundamentals of oxygen transport
Abstract
Keywords
Full Text:
PDFReferences
Hossain Bhuiyan MM, Siddique Z. Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation. Int J Hydrogen Energy. 2025;102:1026–44. doi:10.1016/j.ijhydene.2025.01.033
Du A, Li H, Yan Z, Han Y, Wu X. Review on the controversies surrounding hydrogen together with its leakage and escape throughout the full lifecycle. Sustain Energy Fuels. 2025;9(6):1399–413. doi:10.1039/D4SE01554A
Bampaou M, Panopoulos KD. An overview of hydrogen valleys: Current status, challenges and their role in increased renewable energy penetration. Renew Sustain Energy Rev. 2025;207:114923.doi:10.1016/j.rser.2024.114923
Yang J, Lam TY, Luo Z, Cheng Q, Wang G, Yao H. Renewable energy driven electrolysis of water for hydrogen production, storage, and transportation. Renew Sustain Energy Rev. 2025;218:115804. doi:10.1016/j.rser.2025.115804
Luo G, Zhao Z T, Ding J, Yang S S, Yu X L, Bao M Y, Sun H J, Pang J W, Zhang L Y, Ren N Q. Comparative review of carbon emissions from hydrogen production technologies: The hydrogen color characteristic of biomass-based manufacturing. Renew Sustain Energy Rev. 2025;217:115756. doi:10.1016/j.rser.2025.115756
Qiuchen Z, Ping Z, Xiqiang Z. Challenges and opportunities of microwave technology in hydrogen production, storage and utilization: A review. Int J. Hydrogen Energy. 2025;134:283–98. doi:10.1016/j.ijhydene.2025.04.505
Oliveira MLM, Alves CMAC, Andrade CF, de Azevedo, DCS, Lobo FL, Fuerte A, Ferreira-Aparicio P, Caravaca C, Valenzuela RX. Recent progress and perspectives on functional materials and technologies for renewable hydrogen production. ACS Omega. 2025;10(4):3282–303. doi:10.1021/acsomega.4c10407
Hu T, Song Y, Zhang X, Lin S, Liu P, Zheng C, Gao X. A mini review for hydrogen production routes toward carbon neutrality. Propul Energy. 2025;1(1):1. doi:10.1007/s44270-024-00004-4
Tasleem S, Alsharaeh EH. Role of green, yellow, blue, white and gold hydrogen in fuelling the path to net zero and sustainable future- A review. Energy Convers Manage. 2025;326:119500. doi:10.1016/j.enconman.2025.119500
Cui J, Meng G, Zhang K, Zuo Z, Song X, Zhao Y, Luo S. Research progress on energy-saving technologies and methods for steel metallurgy process systems—A review. Energies. 2025;18(10):2473. doi:10.3390/en18102473
Sun M, Pang K, Barati M, Meng X. Hydrogen-based reduction technologies in low-carbon sustainable ironmaking and steelmaking: A review. J Sustain Metall. 2024;10:10–25. doi:10.1007/s40831-023-00772-4
Nami H, Hendriksen PV, Frandsen HL. Green ammonia production using current and emerging electrolysis technologies. Renew Sustain Energy Rev. 2024;199:114517. doi:10.1016/j.rser.2024.114517
Ishaq H, Crawford C. Review of ammonia production and utilization: Enabling clean energy transition and net-zero climate targets. Energy Convers Manage. 2024;300:117869. doi:10.1016/j.enconman.2023.117869
Wang R, Yang X, Chen X, Zhang X, Chi Y, Zhang D, Chu S, Zhou P. A critical review for hydrogen application in agriculture: Recent advances and perspectives. Crit Rev Environ Sci Technol. 2024;54(3):222–38. doi:10.1080/10643389.2023.2232253
Szablowski L, Wojcik M, Dybinski O. Review of steam methane reforming as a method of hydrogen production. Energy. 2025;316:134540. doi:10.1016/j.energy.2025.134540
Nakkeeran K, Victor K. Grey and blue hydrogen: Insights into production technologies and outlook on CO2-free alternatives. Sustain Energy Technol Assess. 2025;75:104222. doi:10.1016/j.seta.2025.104222
Ganguli A, Bhatt V. Hydrogen production using advanced reactors by steam methane reforming: A review. Front Therm Eng. 2023;3:1143987. doi:10.3389/fther.2023.1143987
Saeidi S, Sápi A, Khoja AH, Najari S, Ayesha M, Kónya Z, Asare-Bediako BB, Tatarczuk A, Hessel V, Keil FJ, Rodrigues AE. Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments. Renew Sustain Energy Rev. 2023;183:113392. doi:10.1016/j.rser.2023.113392
Li A, Chu J, Huang S, Liu Y, He M, Liu X. Machine learning-assisted development of gas separation membranes: A review. Carbon Capture Sci Technol. 2025;14:100374. doi:10.1016/j.ccst.2025.100374
Prasetya N, Wenten IG, Ladewig BP. Advances in membranes from microporous materials for hydrogen separation from light gases. Energy Environ Mater. 2025;8(2):e12843. doi:10.1002/eem2.12843
Harkou E, Wang H, Manos G, Constantinou A, Tang J. Advances in catalyst and reactor design for methanol steam reforming and PEMFC applications. Chem Sci. 2025;16(9):3810–31. doi:10.1039/D4SC06526C
Richard S, Olivier P, Jegoux M, Makhloufi C, Gallucci F. Membrane reactors technologies for e-fuel production & processing: A review. Int J Hydrogen Energy. 2025;112:446–67. doi:10.1016/j.ijhydene.2025.01.361
Saud IH, AlJaberi FY. The most effective techniques of industrial purification processes: A technical review. Chim Tech Acta. 2023;10(4):202310403. doi:10.15826/chimtech.2023.10.4.03
Jiang P, Feng Z, Wang X. Palladium-related metallic membranes for hydrogen separation and purification: A review. Fuel. 2025;386:134192. doi:10.1016/j.fuel.2024.134192
Zhang Z, Zhou W, Wang T, Gu Z, Zhu Y, Liu Z, Wu Z, Zhang G, Jin W. Ion–conducting ceramic membrane reactors for the conversion of chemicals. Membranes. 2023;13(7):621. doi:10.3390/membranes13070621
Belousov VV. Oxygen separation diffusion-bubbling membranes. Phys Chem Chem Phys. 2023;25(21):14686–94. doi:10.1039/D3CP00283G
Ding X, Wang F, Lin G, Tang B, Li X, Zhou G, Wang W, Zhang J, Shi Y. The enhancement of separation performance of hollow fiber membrane modules: From the perspective of membranes and membrane modules structural optimization design. Chem Eng Sci. 2023;280:119106. doi:10.1016/j.ces.2023.119106
Anand C, Chandraja B, Nithiya P, Akshaya M, Tamizhdurai P, Shoba G, Subramani A, Kumaran R, Yadav KK, Gacem A, Bhutto JK, Awjan Alreshidi M, Waqas Alam M. Green hydrogen for a sustainable future: A review of production methods, innovations, and applications. Int J Hydrogen Energy. 2025;111:319–41. doi:10.1016/j.ijhydene.2025.02.257
Shan R, Kittner N. Sector-specific strategies to increase green hydrogen adoption. Renew Sustain Energy Rev. 2025;214:115491. doi:10.1016/j.rser.2025.115491
Lotfollahzade Moghaddam A, Hejazi S, Fattahi M, Kibria MdG, Thomson MJ, AlEisa R, Khan MA. Methane pyrolysis for hydrogen production: Navigating the path to a net zero future. Energy Environ Sci. 2025;18(6):2747–90. doi:10.1039/D4EE06191H
Patlolla SP, Katsu K, Sharafian A, Wei K, Herrera OE, Mérida W. A review of methane pyrolysis technologies for hydrogen production. Renew Sustain Energy Rev. 2023;181:113323. doi:10.1016/j.rser.2023.113323
Tanimu A, Yusuf BO, Lateef S, Tanimu G, Alhassan AM, Azeez MO, Alhooshani K, Ganiyu SA. Dry reforming of methane: Advances in coke mitigation strategies via siliceous catalyst formulations. J Environ Chem Eng. 2024;12(5):113873. doi:10.1016/j.jece.2024.113873
Shafiqah M NN, Siang TJ, Kumar PS, Ahmad Z, Bahari MB, Le QV, Xiao L, Mofijur M, Xia C, Ahmed SF, Vo D VN. Advanced catalysts and effect of operating parameters in ethanol dry reforming for hydrogen generation. A review. Environ Chem Lett. 2022;20(3):1695–717. doi:10.1007/s10311-022-01394-0
Liew WM, Ainirazali N. Cutting-edge innovations in bio-alcohol reforming: Pioneering pathways to high-purity hydrogen: A review. Energy Convers Manage. 2025;326:119463. doi:10.1016/j.enconman.2024.119463
Hasanpour A, Fazlinezhad A, Tabazadeh A. Physicochemical characteristics, process optimization, and energy efficiency of hydrogen production from methanol, ethanol, and glycerol: A comparative review. Eurasian J Chem Med Pet Res. 2025;4:267–85. doi:10.5281/zenodo.14735496
Manzo D, Thai R, Le HT, Venayagamoorthy GK. Fuel cell technology review: Types, economy, applications, and vehicle-to-grid scheme. Sustain Energy Technol Assess. 2025;75:104229. doi:10.1016/j.seta.2025.104229
Tofighi-Milani M, Fattaheian-Dehkordi S, Lehtonen M. Electrolysers: A review on trends, electrical modeling, and their dynamic responses. IEEE Access. 2025;13:39870–85. doi:10.1109/ACCESS.2025.3546546
Osinkin DA. Some aspects of hydrogen oxidation in solid oxide fuel cell: A brief historical overview. Electrochem Mater Technol. 2023;2(3):20232018. doi:10.15826/elmattech.2023.2.018
Singh M, Paydar S, Singh AK, Singhal R, Singh A, Singh M. Recent advancement of solid oxide fuel cells towards semiconductor membrane fuel cells. Energy Mater. 2024;4(1):400012. doi:10.20517/energymater.2023.54
Zhang Z, Du H, Xu K, Zhang X, Ma X, Shuai S. Review of the application of metal-supported solid oxide fuel cell in the transportation field. Automot Innov. 2025. [Cited 2025] doi:10.1007/s42154-024-00316-w
Dunyushkina LA. Field-assisted sintering of refractory oxygen-ion and proton conducting ceramics. Electrochem Mater Technol. 2024;3(3):20243040. doi:10.15826/elmattech.2024.3.040
Sadykov VA, Mezentseva NV, Bobrova LN, Smorygo OL, Eremeev NF, Fedorova YuE, Bespalko YuN, Skriabin PI, Krasnov AV, Lukashevich AI, Krieger TA, Sadovskaya EM, Belyaev VD, Shmakov AN, Vinokurov ZS, Bolotov VA, Tanashev YuYu, Korobeynikov MV, Mikhailenko MA. Advanced materials for solid oxide fuel cells and membrane catalytic reactors. In: Advanced Nanomaterials for Catalysis and Energy. Elsevier; 2019. pp. 435–514. doi:10.1016/B978-0-12-814807-5.00012-7
Sadykov VA, Sadovskaya EM, Eremeev NF, Skriabin PI, Krasnov AV, Bespalko YuN, Pavlova SN, Fedorova YuE, Pikalova EYu, Shlyakhtina AV. Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review). Russ J Electrochem. 2019;55(8):701–18. doi:10.1134/S1023193519080147
Sadykov VA, Muzykantov VS, Yeremeev NF, Pelipenko VP, Sadovskaya EM, Bobin AS, Fedorova YuE, Amanbaeva DG, Smirnova AL. Solid oxide fuel cell cathodes: Importance of chemical composition and morphology. Catal Sustain Energy. 2015;2(1):57–70.doi:10.1515/cse-2015-0004
Humayun M, Li Z, Israr M, Khan A, Luo W, Wang C, Shao Z. Perovskite type ABO3 oxides in photocatalysis, electrocatalysis, and solid oxide fuel cells: State of the art and future prospects. Chem Rev. 2025;125(6):3165–241. doi:10.1021/acs.chemrev.4c00553
Zhu H, Li J, Zhang J. Recent advances in spinel-based protective coatings on metallic interconnects for solid oxide fuel cells from the perspective of coating design. Int J Hydrogen Energy. 2025;113:26–38. doi:10.1016/j.ijhydene.2025.02.433
Guo Z, Xu L, Ling Y, Wang P, Wei K, Qiu P. A perspective on cathode materials for proton-conducting solid oxide fuel cells. Int J Hydrogen Energy. 2025;106:52–64. doi:10.1016/j.ijhydene.2025.01.461
Yuan Q, Wang W, Li B, Li H, Zhang X, Chen G. Electrospinning of porous fiber-electrode materials for solid oxide fuel cells: Fundamentals and challenges. J Power Sources. 2025;625:235616. doi:10.1016/j.jpowsour.2024.235616
Jia Y, Lan X, Fan H. Recent advances in cathode materials for solid oxide fuel cell. Ceram Int. 2025;51(11):13697–712. doi:10.1016/j.ceramint.2025.01.229
Nikiforakis I, Mamalis S, Assanis D. Understanding solid oxide fuel cell hybridization: A critical review. Appl Energy. 2025;377C:124277. doi:10.1016/j.apenergy.2024.124277
Mageto T, Bhoyate S, Kumar A, Gupta RK. Progress, challenges, and prospects with electrocatalyst (From transition metal oxides to dual-atom catalysts) for oxygen reduction reaction. Mol Catal. 2024;562:114196. doi:10.1016/j.mcat.2024.114196
Chun O, Jamshaid F, Khan MZ, Gohar O, Hussain I, Zhang Y, Zheng K, Saleem M, Motola M, Hanif MB. Advances in low-temperature solid oxide fuel cells: An explanatory review. J Power Sources. 2024;610:234719. doi:10.1016/j.jpowsour.2024.234719
Kim JH, Kim D, Ahn S, Kim KJ, Jeon S, Lim DK, Kim JK, Kim U, Im HN, Koo B, Lee KT. An universal oxygen electrode for reversible solid oxide electrochemical cells at reduced temperatures. Energy Environ Sci. 2023;16(9):3803–14. doi:10.1039/D2EE04108A
Tarutin AP, Filonova EA, Ricote S, Medvedev DA, Shao Z. Chemical design of oxygen electrodes for solid oxide electrochemical cells: A guide. Sustain Energy Technol Assess. 2023;57:103185. doi:10.1016/j.seta.2023.103185
Chen G, Widenmeyer M, Yu X, Han N, Homm G, Liu S, Weidenkaff A. Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. J Am Ceram Soc. 2024;107(3):1490–504. doi:10.1111/jace.19411
Singh R, Prasad B, Ahn Y H. Recent developments in gas separation membranes enhancing the performance of oxygen and nitrogen separation: A comprehensive review. Gas Sci Eng. 2024;123:205256. doi:10.1016/j.jgsce.2024.205256
Sadykov VA, Sadovskaya EM, Eremeev NF, Pikalova EYu, Bogdanovich NM, Filonova EA, Krieger TA, Fedorova YuE, Krasnov AV, Skriabin PI, Lukashevich AI, Steinberger-Wilckens R, Vinke IC. Novel materials for solid oxide fuel cells cathodes and oxygen separation membranes: Fundamentals of oxygen transport and performance. Carbon Resour Convers. 2020;3:112–121. doi:10.1016/j.crcon.2020.08.002
Tarasova N, Hanif MB, Janjua NK, Anwar S, Motola M, Medvedev D. Fluorine-insertion in solid oxide materials for improving their ionic transport and stability. A brief review. Int J Hydrogen Energy. 2024;50C:104–23. doi:10.1016/j.ijhydene.2023.08.074
Ndubuisi A, Abouali S, Singh K, Thangadurai V. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes. J Mater Chem A 2022;10(5):2196–227. doi:10.1039/D1TA08475E
Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev. 2004;104(10):4791–844. doi:10.1021/cr020724o
Adler SB, Lane JA, Steele BCH. Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc. 1996;143(11):3554–64. doi:10.1149/1.1837252
Sadykov V, Pikalova E, Sadovskaya E, Shlyakhtina A, Filonova E, Eremeev N. Design of mixed ionic-electronic materials for permselective membranes and solid oxide fuel cells based on their oxygen and hydrogen mobility. Membranes. 2023;13(8):698. doi:10.3390/membranes13080698
Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens P. Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4+δ oxides. Solid State Ionics. 2005;176(37–38):2717–25. doi:10.1016/j.ssi.2005.06.033
Huang Q A, Hui R, Wang B, Zhang J. A review of AC impedance modeling and validation in SOFC diagnosis. Electrochim Acta. 2007;52(28):8144–64. doi:10.1016/j.electacta.2007.05.071
Desta HG, Gebreslassie G, Zhang J, Lin B, Zheng Y, Zhang J. Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering. Prog. Mater. Sci. 2025;147:101353. doi:10.1016/j.pmatsci.2024.101353
Yang G, Jung W, Ahn S J, Lee D. Controlling the oxygen electrocatalysis on perovskite and layered oxide thin films for solid oxide fuel cell cathodes. Appl. Sci. 2019;9(5):1030. doi:10.3390/app9051030
Ghamarinia M, Babaei A, Zamani C, Aslannejad H. Application of the distribution of relaxation time method in electrochemical analysis of the air electrodes in the SOFC/SOEC devices: A review. Chem Eng J Adv. 2023;15:100503. doi:10.1016/j.ceja.2023.100503
Casadio S, Gondolini A, Mercadelli E, Sanson A. Advances and prospects in manufacturing of ceramic oxygen and hydrogen separation membranes. Renew Sustain Energy Rev. 2024;200:114600. doi:10.1016/j.rser.2024.114600
Alami AH, Alashkar A, Abdelkareem MA, Rezk H, Masdar MS, Olabi AG. Perovskite membranes: Advancements and challenges in gas separation, production, and capture. Membranes. 2023;13(7):661. doi:10.3390/membranes13070661
Egorova A, Belova K, Animitsa I. Doping effects on the structure, transport properties, and chemical stability of LaInO3 perovskite: A review. Chim Tech Acta. 2025;12(1):12111. doi:10.15826/chimtech.2025.12.1.11
Fop S. Solid oxide proton conductors beyond perovskites. J Mater Chem A. 2021;9(35):18836–56. doi:10.1039/d1ta03499e
Tang H, Gong Z, Wu Y, Jin Z, Liu W. Electrochemical performance of nanostructured LNF infiltrated onto LNO cathode for BaZr0.1Ce0.7Y0.2O3−δ–based solid oxide fuel cell. Int J Hydrogen Energy. 2018;43(42):19749–56. doi:10.1016/j.ijhydene.2018.09.008
Yılmaz EE, Koşma EB, Figen HE, Karaismailoğlu Elibol M. Physicochemical characterization of calcium-doped barium zirconate perovskites for hydrogen-induced systems and their life cycle assessment. Int J Hydrogen Energy. 2025. [Cited 2025] doi:10.1016/j.ijhydene.2025.01.313
Sadykov V, Sadovskaya E, Eremeev N, Pikalova E, Bogdanovich N, Filonova E, Fedorova Yu, Krasnov A, Skriabin P, Lukashevich A. Design of materials for solid oxide fuel cells cathodes and oxygen separation membranes based on fundamental studies of their oxygen mobility and surface reactivity. E3S Web Conf. 2019;116:00068. doi:10.1051/e3sconf/201911600068
Morales-Zapata MA, Larrea A, Laguna-Bercero MA. Lanthanide nickelates for their application on solid oxide cells. Electrochim Acta. 2023;444:141970. doi:10.1016/j.electacta.2023.141970
Yatoo M, Seymoor ID, Skinner SJ. Neutron diffraction and DFT studies of oxygen defect and transport in higher-order Ruddlesden–Popper phase materials. RSC Adv. 2023;13(20):13786–97. doi:10.1039/D3RA01772A
Alizad Farzin Y, Mogensen MB, Pirou S, Lund Frandsen H. Perovskite/Ruddlesden-Popper composite fuel electrode of strontium-praseodymium-manganese oxide for solid oxide cells: An alternative candidate. J Power Sources. 2023;580:233450. doi:10.1016/j.jpowsour.2023.233450
Chen X, Zhang J, Thind AS, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan DP, Botana AS, Klie RF, Mitchell JF. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: Discovery of a hidden phase with distinctive layer stacking. J Am Chem Soc. 2024;146(6):3640–5. doi:10.1021/jacs.3c14052
Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, Qi Y. Effects of pressure and doping on Ruddlesden-Popper phases Lan+1NinO3n+1. J Mater Sci Technol. 2024;185:147–54. doi:10.1016/j.jmst.2023.11.011
Vereshchagin S, Dudnikov V. Empirical analysis of stability of An+1BnO3n+1 Ruddlesden–Popper phases using reciprocal n-values. Crystals. 2024;14(11):954. doi:10.3390/cryst14110954
Bernardini F, Fiebig M, Cano A. Ruddlesden–Popper and perovskite phases as a material platform for altermagnetism. J Appl Phys. 2025;137(10):103903. doi:10.1063/5.0252836
Ferchaud C, Grenier J C, Zhang-Steenwinkel Y, van Tuel MMA, van Berkel FPF, Bassat, J-M. High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell. J Power Sources. 2011;196(4):1872–9. doi:10.1016/j.jpowsour.2010.09.036
Zhou X D, Templeton JW, Nie Z, Chen H, Stevenson JW, Pederson LR. Electrochemical performance and stability of the cathode for solid oxide fuel cells: V. High performance and stable Pr2NiO4 as the cathode for solid oxide fuel cells. Electrochim Acta. 2012;71:44–9. doi:10.1016/j.electacta.2012.03.067
Meng X, Lü S, Liu S, Liu X, Sui Y, Li X, Pang M, Wang B, Ji Y, Hu MZ. Electrochemical characterization of B-site cation-excess Pr2Ni0.75Cu0.25Ga0.05O4+δ cathode for IT-SOFCs. Ceram Int. 2015;41(9B):12107–14. doi:10.1016/j.ceramint.2015.06.028
Amow G, Davidson IJ, Skinner IJ. A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications. Solid State Ionics. 2006;177(13–14):1205–10. doi:10.1016/j.ssi.2006.05.005
Pikalova EYu, Guseva EM, Filonova EA. Short review on recent studies and prospects of application of rare-earth-doped La2NiO4+δ as air electrodes for solid oxide electrochemical cells. Electrochem Mater Technol. 2024;2(4):20232025. doi:10.15826/elmattech.2023.2.025
Gu C Y, Wu X S, Cao J F, Hou J, Miao L N, Xia Y P, Fu C, Liu W. High performance Ca-containing La2−xCaxNiO4+δ (0 ≤ x ≤ 0.75) cathode for proton-conducting solid oxide fuel cells. Int J Hydrogen Energy. 2020;45(43):23422–32. doi:10.1016/j.ijhydene.2020.06.106
Han Z, Bai J, Chen X, Zhu X, Zhou D. Novel cobalt-free Pr2Ni1−xNbxO4 (x = 0, 0.05, 0.10, and 0.15) perovskite as the cathode material for IT-SOFC. Int J Hydrogen Energy. 2021;46(21):11894–907. doi:10.1016/j.ijhydene.2021.01.045
Tarutin AP, Gilev AR, Baratov SA, Vdovin GK, Medvedev DA. Ba-doped Pr2NiO4+δ electrodes for proton-conducting electrochemical cells. Part 3: Electrochemical applications. Int J Hydrogen Energy. 2024;60:261–71. doi:10.1016/j.ijhydene.2024.02.173
Yatoo MA, Skinner SJ. Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review. Mater Today Proc. 2022;56(6):3747–54. doi:10.1016/j.matpr.2021.12.537
Escobar Cano G, Matsuda M, Zhao Z, Steinbach F, Breidenstein B, Petersen H, Graff A, Widenmeyer M, Weidenkaff A, Feldhoff A. Tailoring the anisotropic oxygen transport properties in bulk ceramic membranes based on a Ruddlesden–Popper oxide by applying magnetic fields. Adv Sci. 2025;12(12):2411251. doi:10.1002/advs.202411251
Geffroy P M, Reichmann M, Chartier T, Bassat J M, Grenier J C. Evaluating oxygen diffusion, surface exchange and oxygen semi-permeation in Ln2NiO4+δ membranes (Ln = La, Pr and Nd). J Membr Sci. 2014;451:234–42. doi:10.1016/j.memsci.2013.08.035
Ishihara T, Miyoshi S, Furuno T, Sanguanruang O, Matsumoto H. Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxide. Solid State Ionics. 2006;177(35–36):3087–91. doi:10.1016/j.ssi.2006.08.013
Ishihara T, Sirikanda N, Nakashima K, Miyoshi S, Matsumoto H. Mixed oxide ion and hole conductivity in Pr2−αNi0.76−xCu0.24GaxO4+δ membrane. J Electrochem Soc. 2010;157(1):B141–6. doi:10.1149/1.3251004
Miyoshi S, Furuno T, Sanguanruang O, Matsumoto H, Ishihara T. Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxides. J Electrochem Soc. 2007;154(1):B57–B62. doi:10.1149/1.2387103
Yang S, Liu G, Li W, Sabolsky EM, Liu X, Zhong Y. Ab initio study on the effect of A-site doping on the stability, equilibrium volume, activation energy barrier, and oxygen diffusivity in La2−xAxNiO4+δ. Int J Hydrogen Energy. 2025;119:235–51. doi:10.1016/j.ijhydene.2025.03.239
Li X, Benedek NA. Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain. Chem. Mater. 2015;27(7):2647–52. doi:10.1021/acs.chemmater.5b00445
Minervini L, Grimes RW, Kilner JA, Sickafus KE.Oxygen migration in La2NiO4+δ. J Mater Chem. 2000;10(10):2349–54. doi:10.1039/B004212I
Kushima A, Parfitt D, Chroneos A, Yildiz B, Kilner JA, Grimes RW. Interstitialcy diffusion of oxygen in tetragonal La2CoO4+δ. Phys Chem Chem Phys. 2011;13(6):2242–9. doi:10.1039/C0CP01603A
Eisbacher-Lubensky S, Egger A, Sitte W, Bucher E. Oxygen exchange and transport properties of the first-order Ruddlesden-Popper phase La2Ni0.9Co0.1O4+δ. Solid State Ionics. 2023;397:116255. doi:10.1016/j.ssi.2023.116255
Yang G, El Loubani M, Hill D, Keum JK, Lee D. Control of crystallographic orientation in Ruddlesden-Popper for fast oxygen reduction. Catal Today. 2023;409:87–93. doi:10.1016/j.cattod.2022.04.022
Lian S, He L, Li C, Ren J, Bi L, Chen M, Lin Z. Uncovering the enhancement mechanism of the oxygen reduction reaction on perovskite/Ruddlesden–Popper oxide heterostructures (Nd,Sr)CoO3/(Nd,Sr)2CoO4 and (Nd,Sr)CoO3/(Nd,Sr)3Co2O7. J Phys Chem Lett. 2023;14(11):2869–77. doi:10.1021/acs.jpclett.2c03333
Li P, Yang Q, Wu H, Shang J, Yan F, Tong X, Gan T, Wang L. Oxygen vacancy engineering in Cu-doped Ruddlesden–Popper oxides for reversible solid oxide cells. Energy Fuels. 2025;39(14):7047–56. doi:10.1021/acs.energyfuels.5c00422
Shan P, Ye H, Chen Z, Qian B, Zhou C, Yang H, Zheng Y. Anionic engineering of the Ruddlesden-Popper oxide La2NiO4+δ: Targeted enhancement of the electrocatalytic activity of air electrodes via chemical fluorination for solid oxide electrolysis cells. J Power Sources. 2025;642:236940. doi:10.1016/j.jpowsour.2025.236940
Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, Smirnov AS, Kolchugin AA, Porotnikova NM, Khodimchuk AV, Berenov AV, Kurumchin EKh. Oxygen isotope exchange in La2NiO4±δ. Phys Chem Chem Phys. 2016;18(13):9102–11. doi:10.1039/C5CP05984D
Song J, Ning D, Boukamp B, Bassat J M, Bouwmeester HJM. Structure, electrical conductivity and oxygen transport properties of Ruddlesden–Popper phases Lnn+1NinO3n+1 (Ln = La, Pr and Nd; n = 1, 2 and 3). J Mater Chem A. 2020;8(42):22206–21. doi:10.1039/D0TA06731H
Hou K, Lou C, Tang M, Cao H, Liu L, Xu J. Defect structure, oxygen ion conduction, and conducting mechanism in Ruddlesden–Popper Sr3Zr2–xMxO7–0.5x (M = Ga, Y, In). Inorg Chem. 2024;63(38):17727–39. doi:10.1021/acs.inorgchem.4c02571
Yatoo MA, Skinner SJ. Oxygen transport in higher-order Ruddlesden-Popper phase materials. ECS Trans. 2023;111(6):2405–12. doi:10.1149/11106.2405ecst
Sadykov VA, Eremeev NF, Shlyakhtina AV, Pikalova EYu. Advances in alternative metal oxide materials of various structures for electrochemical and catalytic applications. Int J Hydrogen Energy. 2024;94:179–208. doi:10.1016/j.ijhydene.2024.11.072
Klyndyuk AI, Chizhova EA, Kharytonau DS, Medvedev DA. Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells. Materials. 2022;15(1):141. doi:10.3390/ma15010141
Baratov S, Filonova E, Ivanova A, Hanif MB, Irshad M, Khan MZ, Motola M, Rauf S, Medvedev D. Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews. J Energy Chem. 2024;94:302–31. doi:10.1016/j.jechem.2024.02.047
Zhu Y, Zhou W, Chen Y, Shao Z. An Aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells. Angew Chem Int Ed. 2016;55(31):8988–93. doi:10.1002/anie.201604160
Yadav AK, Sinha S, Kumar A. Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review. Int J Hydrogen Energy. 2024;59:1080–93. doi:10.1016/j.ijhydene.2024.02.124
Malavasi L, Fisher CAJ, Saiful Islam M. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev. 2010;39(11):4370–87. doi:10.1039/B915141A
Balaguer M, Yoo C Y, Bouwmeester HJM, Serra JM. Bulk transport and oxygen surface exchange of the mixed ionic–electronic conductor Ce1−xTbxO2−δ (x = 0.1, 0.2, 0.5). J Mater Chem A. 2013;1(35):10234–42. doi:10.1039/C3TA11610G
Kolbanev IV, Shlyakhtina AV, Degtyarev EN, Konysheva EYu, Lyskov NV, Stolbov DN, Streletskii AN. Room-temperature mechanochemical synthesis of RE molybdates: Impact of structural similarity and basicity of oxides. J Am Ceram Soc. 2021;104(11):5698–710. doi:10.1111/jace.17939
Koroleva MS, Eremeev NF, Sadovskaya EM, Sadykov VA, Piir IV. Synthesis, optical properties, and oxide ionic transport features in Mn-Li-, Mn-Ru-, Mn-Ru-Li-codoped bismuth niobate pyrochlores. Ceram Int. 2025;51(8):9807–16. doi:10.1016/j.ceramint.2024.12.412
Bhosale DR, Patil SI. Conduction pathways and mixed ionic-electronic conductivity below 500 °C in CaxY3−xFe5O12−δ materials. Phys Rev Mater. 2019;3:095007. doi:10.1103/PhysRevMaterials.3.095007
Araújo AJM, Macedo DA, Graça VCD, Holz LIV, Fagg DP, Loureiro FJA. Progress in misfit Ca-cobaltite electrodes for solid oxide electrochemical cells. In: Handbook of Energy Materials. Springer; 2022. pp. 1-34. doi:10.1007/978-981-16-4480-1_71-1
Lu Y, Noor A, Ahmed J, Alwadie N, Akhtar MN, Abid S, Yousaf M, Mahmoud M, Aslam M. Synergistic effects and electrocatalytic insight of single-phase hexagonal structure as low-temperature solid oxide fuel cell cathode. J Rare Earths. 2024. [Cited 2025] doi:10.1016/j.jre.2024.06.027
Parkkima O, Karppinen M. The YBaCo4O7+δ-based functional oxide material family: A review. Eur J Inorg Chem. 2014;2014(25):4056–67. doi:10.1002/ejic.201402135
Pirovano C, Löfberg A, Bodet H, Bordes-Richard E, Steil MC, Vannier RN. BIMEVOX as dense membrane in catalytic reactor (ME = Co, Cu, Ta). Solid State Ionics. 2006;177(26–32):2241–44. doi:10.1016/j.ssi.2006.01.025
Rauf S, Hanif MB, Tayyab Z, Veis M, Yousaf Shah MAK, Mushtaq N, Medvedev DA, Tian Y, Xia C, Motola M, Zhu B. Alternative strategy for development of dielectric calcium copper titanate-based electrolytes for low-temperature solid oxide fuel cells. Nano-Micro Lett. 2025;17(1):13. doi:10.1007/s40820-024-01523-0
Liao T, Sasaki T, Sun Z. The oxygen migration in the apatite-type lanthanum silicate with the cation substitution. Phys Chem Chem Phys. 2013;15(40):17553–59. doi:10.1039/c3cp52245h
Pikalova EYu, Kolchugin AA, Sadykov VA, Sadovskaya EM, Filonova EA, Eremeev NF, Bogdanovich NM. Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium. Int J Hydrogen Energy. 2018;43(36):17373–86. doi:10.1016/j.ijhydene.2018.07.115
Sadykov VA, Sadovskaya EM, Uvarov NF. Methods of isotopic relaxations for estimation of oxygen diffusion coefficients in solid electrolytes and materials with mixed ionic-electronic conductivity. Russ J Electrochem. 2015;51(5):458–67. doi:10.1134/S1023193515050109
Sadykov V, Sadovskaya E, Bobin A, Kharlamova T, Uvarov N, Ulikhin A, Argirusis C, Sourkouni G, Stathopoulos V. Temperature-programmed C18O2 SSITKA for powders of fast oxide-ion conductors: Estimation of oxygen self-diffusion coefficients. Solid State Ionics. 2015;271:69–72. doi:10.1016/j.ssi.2014.11.004
Muzykantov VS, Popovski VV, Boreskov GK. Kinetika izotop-nogo obmena v sisteme molekulyarnyi kislorod – tvyodyi okisel [Kinetics of isotope exchange in molecular oxygen – solid oxide system]. Kinet Katal. 1964;5(4):624–9. Russian.
Muzykantov VS, Kemnitz E, Sadykov VA, Lunin VV. Interpretation of isotope exchange data “without time”: Nonisothermal exchange of dioxygen with oxides. Kinet Catal. 2003;44(3):319–22. doi:10.1023/A:1024486716938
Muzykantov VS. Studies of dioxygen activation on oxide catalysts for oxidation: Problems, results and perspectives. React Kinet Catal Lett. 1987;35(1–2):437–47. doi:10.1007/BF02062178
Andersen H, Haugsrud R. Effects of particle size on oxygen surface exchange kinetics determined by pulse isotope exchange. Appl Surf Sci. 2025;690:162601. doi:10.1016/j.apsusc.2025.162601
Khodimchuk AV, Zakharov DM, Gordeev EV, Porotnikova NM. 16O2 – 18O2 interface exchange study between gas phase and the BaFeO3–δ oxide. J Phys Chem Solids. 2025;196:112390. doi:10.1016/j.jpcs.2024.112390
Manon A, Nau A, Belin T, Mazurier A, Bassat JM, Bion N, Comminges C. Influence of electrode potential on oxygen mobility probed by polarized isotopic exchange in solid oxide electrolyser cells: Insights for electro‐assisted oxidation reactions. ChemCatChem. 2024;16(11):e202301616. doi:10.1002/cctc.202301616
Arapova M, Chizhik S, Bragina O, Guskov R, Sobolev V, Nemudry A. Consistent interpretation of isotope and chemical oxygen exchange relaxation kinetics in SrFe0.85Mo0.15O3−δ ferrite. Phys Chem Chem Phys. 2024;26(14):10589–98. doi:10.1039/D3CP05441A
Akhmadeev AR, Eremin VA, Ananyev MV, Voloshin BV, Popov MP, Ivanov IL, Fetisov AV. Oxygen stoichiometry and isotope exchange of oxides Ba0.5Sr0.5Co0.8Fe0.2O3−δ doped with Ta, Nb, Mo or W. Appl Surf Sci. 2023;629:157312. doi:10.1016/j.apsusc.2023.157312
Pikalova E, Sadykov V, Sadovskaya E, Yeremeev N, Kolchugin A, Shmakov A, Vinokurov Z, Mishchenko D, Filonova E, Belyaev D. Correlation between structural and transport properties of Ca-doped La nickelates and their electrochemical performance. Crystals. 2021;11(3):297. doi:10.3390/cryst11030297
Sadykov V, Shlyakhtina A, Sadovskaya E, Eremeev N, Skazka V, Goncharov V. 2D diffusion of oxygen in Ln10Mo2O21 (Ln = Nd, Ho) oxides. Solid State Ionics. 2020;346:115229. doi:10.1016/j.ssi.2020.115229
Sadykov V, Shlyakhtina A, Lyskov N, Sadovskaya E, Cherepanova S, Eremeev N, Skazka V, Goncharov V, Kharitonova E. Oxygen diffusion in Mg-doped Sm and Gd zirconates with pyrochlore structure. Ionics. 2020;26(9):4621–33. doi:10.1007/s11581-020-03614-5
Sadovskaya EM, Bobin AS, Skazka VV. Isotopic transient analysis of oxygen exchange over oxides. Chem Eng J. 2018;348:1025–36. doi:10.1016/j.cej.2018.05.027
Sadykov VA, Sadovskaya EM, Skazka VV, Eremeev NF, Skriabin PI, Krasnov AV, Bespalko YuN, Pavlova SN, Fedorova YuE, Pikalova EYu, Shlyakhtina AV. Isothermal and temperature-programmed isotope exchange of oxygen in a flow reactor for SOFC and catalytic membranes materials. In: ISOTOPCAT 2019 (International Symposium “Isotopic Studies in Catalysis and Electrocatalysis); 2019 Jul 03-06; Poitiers, France. pp. 25–6.
Grobovoy IS, Kolchugin AA, Pikalova EYu, Suntsov AYu. Defect formation and thermodynamic properties of Ca-doped La2NiO4 oxides. Inorg Chem Commun. 2025;179(2):114823. doi:10.1016/j.inoche.2025.114823
Sadykov VA, Pikalova EYu, Vinokurov ZS, Shmakov AN, Eremeev NF, Sadovskaya EM, Lyagaeva JG, Medvedev DA, Belyaev VD. Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy. Solid State Ionics. 2019;333:30–7.doi:10.1016/j.ssi.2019.01.014
Pikalova EYu, Sadykov VA, Filonova EA, Eremeev NF, Sadovskaya EM, Pikalov SM, Bogdanovich NM, Lyagaeva JG, Kolchugin AA, Vedmid’ LB, Ishchenko AV, Goncharov VB. Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4. Solid State Ionics. 2019;335:53–60. doi:10.1016/j.ssi.2019.02.012
Kol’chugin AA, Pikalova EYu, Bogdanovich NM, Bronin DI, Filonova EA. Electrochemical properties of doped lantanum–nickelate-based electrodes. Russ J Electrochem. 2017;53(8):826–33. doi:10.1134/S1023193517080110
Herlihy A, Chem W T, Ritter C, Chuang Y C, Senn MS. Interplay between Jahn−Teller distortions and structural phase transitions in Ruddlesden−Poppers. J Am Chem Soc. 2025;147(9):7209−13. doi:10.1021/jacs.5c00459
Huangfu S, Zhang X, Schilling A. Correlation between the tolerance factor and phase transition in A4–xBxNi3O10 (A and B = La, Pr, and Nd; x = 0, 1, 2, and 3). Phys Rev Res. 2020;2(3):033247. doi:10.1103/PhysRevResearch.2.033247
Gilev AR, Sukhanov AS, Kiselev EA, Sobol ME, Cherepanov VA. Increasing thermodynamic stability and electrochemical performance of IT-SOFC cathodes based on Ln2MO4 (Ln = La, Pr; M = Ni, Cu). Ceram Int. 2024;50:40453–63. doi:10.1016/j.ceramint.2024.04.176
Sharma ID, Singh D. Solid state chemistry of Ruddlesden-Popper type complex oxides. Bull Mater Sci. 1998;21(5):363–74. doi:10.1007/BF02744920
Poix P. Etude de la structure K2NiF4 par la méthode des invarians. I. Cas des oxydes A2BO4. [Study of the structure K2NiF4 by the method of the invariants, I. Oxides A2BO4] J Solid State Chem. 1980;31(1):95–102. French. doi:10.1016/0022-4596(80)90011-0
Chen B H. Introduction of a tolerance factor for the Nd2CuO4 (T’)-type structure. J Solid State Chem. 1996:125(1):63–6. doi:10.1006/jssc.1996.0265
Shin HG, Kim EH, Kim J, Kim H, Lee D. Ruddlesden-Popper tolerance factor: An indicator predicting stability of 2D Ruddlesden-Popper phases. Acta Mater. 2025;396:120999. doi:10.1016/j.actamat.2025.120999
Sadykov VA, Sadovskaya EM, Pikalova EYu, Kolchugin AA, Filonova EA, Pikalov SM, Eremeev NF, Ishchenko AV, Lukashevich AI, Bassat JM. Transport features in layered nickelates: Correlation between structure, oxygen diffusion, electrical and electrochemical properties. Ionics. 2018;24(4):1181–93. doi:10.1007/s11581-017-2279-3
Sadykov VA, Pikalova EYu, Kolchugin AA, Fetisov AV, Sadovskaya EM, Filonova EA, Eremeev NF, Goncharov VB, Krasnov AV, Skriabin PI, Shmakov AN, Vinokurov ZS, Ishchenko AV, Pikalov SM. Transport properties of Ca-doped Ln2NiO4 for intermediate temperature solid oxide fuel cells cathodes and catalytic membranes for hydrogen production. Int J Hydrogen Energy. 2020;45(25):13625–42. doi:10.1016/j.ijhydene.2018.03.039
Sadykov VA, Pikalova EYu, Kolchugin AA, Filonova EA, Sadovskaya EM, Eremeev NF, Ishchenko AV, Fetisov AV, Pikalov SM. Oxygen transport properties of Ca-doped Pr2NiO4. Solid State Ionics. 2018;317:234–43. doi:10.1016/j.ssi.2018.01.035
Mishchenko D, Vinokurov Z, Gerasimov E, Filonova E, Shmakov A, Pikalova E. Unusual lattice parameters behavior for La1.9Ca0.1NiO4+δ at the temperatures below oxygen loss. Crystals. 2022;12(3):344. doi:10.3390/cryst12030344
Kolchugin AA, Pikalova EYu, Bogdanovich NM, Bronin DI, Pikalov SM, Plaksin SV, Ananyev MV, Eremin VA. Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate. Solid State Ionics. 2016;288:48–53. doi:10.1016/j.ssi.2016.01.035
Aguadero A, Escudero MJ, Pérez M, Alonso JA, Pomjakushin V, Dazaad L. Effect of Sr content on the crystal structure and electrical properties of the system La2−xSrxNiO4+δ (0 ≤ x ≤ 1). Dalton Trans. 2006;36:4377–83. doi:10.1039/B606316K
Pikalov SM, Vedmid’ LB, Filonova EA, Pikalova EYu, Lyagaeva JG, Danilov NA, Murashkina AA. High-temperature behavior of calcium substituted layered neodymium nickelates. J Alloys Compd. 2019;801:558–67. doi:10.1016/j.jallcom.2019.05.349
Pikalova EYu, Bogdanovich NM, Kolchugin AA, Ananyev MV, Pankratov AA. Influence of the synthesis method on the electrochemical properties of bilayer electrodes based on La2NiO4+δ and LaNi0.6Fe0.4O3−δ. Solid State Ionics. 2016;288:36–42. doi:10.1016/j.ssi.2016.01.014
Pikalova EYu, Medvedev DA, Khasanov AF. Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4+δ. Phys Solid State. 2017;59(4):694–702. doi:10.1134/S1063783417040187
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystal A. 1976;32(5):751–67. doi:10.1107/S0567739476001551
Sadykov V, Pikalova E, Eremeev N, Shubin A, Zilberberg I, Prosvirin I, Sadovskaya E, Bukhtiyarov A. Oxygen transport in Pr nickelates: Elucidation of atomic-scale features. Solid State Ionics. 2020;344:115155. doi:10.1016/j.ssi.2019.115155
Takeda Y, Nishijima M, Imanishi N, Kanno R, Yamomoto O. Crystal chemistry and transport properties of Nd2−xAxNiO4 (A = Ca, Sr, or Ba, 0 < x < 1.4). J Solid State Chem. 1992;96(1):72–83. doi:10.1016/S0022-4596(05)80299-3
Ormerod RM. Solid oxide fuel cells. Chem Soc Rev. 2003;32(1):17–28. doi:10.1039/B105764M
Pikalova EYu, Bogdanovich NM, Kolchugin AA, Brouzgou A, Bronin DI, Plaksin SV, Khasanov AF, Tsiakaras P. Effect of nature of the ceramic component of the composite electrodes based on La1.7Ca(Sr)0.3NiO4+δ on their electrochemical performance. ECS Trans. 2015;68(1):809–15. doi:10.1149/06801.0809ecst
Pikalova EYu, Kolchugin AA. The influence of the substituting element (M = Ca, Sr, Ba) in La1.7M0.3NiO4+δ on the electrochemical performance of the composite electrodes. Eurasian Chem-Technol J. 2016;18(1):3–11. doi:10.18321/ectj386
Kalinina E, Pikalova E, Kolchugin A, Pikalova N, Farlenkov A. Comparative Study of electrophoretic deposition of doped BaCeO3-based films on La2NiO4+δ and La1.7Ba0.3NiO4+δ cathode substrates. Materials. 2019;12(16):2545. doi:10.3390/ma12162545
Sadykov VA, Sadovskaya EM, Eremeev NF, Maksimchuk TYu, Pikalov SM, Filonova EA, Pikalova NS, Gilev AR, Pikalova EYu. Structure, oxygen mobility, and electrochemical characteristics of La1.7Ca0.3Ni1−xCuxO4+δ materials. Russ J Electrochem. 2023;59(1):37–48. doi:10.1134/S1023193523010068
Filonova E, Gilev A, Maksimchuk T, Pikalova N, Zakharchuk K, Pikalov S, Yaremchenko A, Pikalova E. Development of La1.7Ca0.3Ni1−yCuyO4+δ materials for oxygen permeation membranes and cathodes for intermediate-temperature solid oxide fuel cells. Membranes. 2022;12(12):1222. doi:10.3390/membranes12121222
Nakamura T, Oike R, Ling Y, Tamenori Y, Amezawa K. Determining factor for the interstitial oxygen formation in Ruddlesden–Popper type La2NiO4-based oxides. Phys Chem Chem Phys. 2015;18(3):1564–9. doi:10.1039/C5CP05993C
Aguadero A, Alonso J, Escudero M, Daza L. Evaluation of the La2Ni1−xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ionics. 2008;179(11–12):393–400. doi:10.1016/j.ssi.2008.01.099
Sakai M, Wang C, Okiba T, Soga H, Niwa E, Hashimoto T. Thermal analysis of structural phase transition behavior of Ln2Ni1−xCuxO4+δ (Ln = Nd, Pr) under various oxygen partial pressures. J Therm Anal Calorim. 2019;135(5):2765–74. doi:10.1007/s10973-018-7621-0
Sadykov V, Eremeev N, Sadovskaya E, Zhulanova T, Pikalov S, Fedorova Yu, Pikalova E. Impact of calcium and copper co-doping on the oxygen transport of layered nickelates: A case study of Pr1.6Ca0.4Ni1−yCuyO4+δ and a comparative analysis. Chim Tech Acta. 2024;11(4):202411411. doi:10.15826/chimtech.2024.11.4.11
Pikalova E, Zhulanova T, Ivanova A, Tarutin A, Fetisov A, Filonova E. Optimized Pr1.6Ca0.4Ni1−yCuyO4+δ phases as promising electrode materials for CeO2- and BaCe(Zr)O3-based electrochemical cells. Ceram Int. 2024;50(20C):40476–91. doi:10.1016/j.ceramint.2024.06.048
Zhulanova T, Filonova E, Ivanova A, Russkikh O, Pikalova E. Control physicochemical and electrochemical properties of Pr1.6Cа0.4Ni0.6Cu0.4O4+δ as a prospective cathode material for solid oxide cells through the synthesis process. Solid State Sci. 2024;156:107671. doi:10.1016/j.solidstatesciences.2024.107671
Maksimchuk T, Filonova E, Mishchenko D, Eremeev N, Sadovskaya E, Bobrikov I, Fetisov A, Pikalova N, Kolchugin A, Shmakov A, Sadykov V, Pikalova E. High-temperature behavior, oxygen transport properties, and electrochemical performance of Cu-substituted Nd1.6Ca0.4NiO4+δ electrode materials. Appl Sci. 2022;12(8):3747. doi:10.3390/app12083747
Filonova EA, Pikalova EYu, Maksimchuk TYu, Vylkov AI, Pikalov SM, Maignan A. Crystal structure and functional properties of Nd1.6Ca0.4Ni1−yCuyO4+δ as prospective cathode materials for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energy. 2021;46(32):17037–50. doi:10.1016/j.ijhydene.2020.10.243
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44(6):1272–6. doi:10.1107/S0021889811038970
Tarutin AP, Lyagaeva JG, Medvedev DA, Bi L, Yaremchenko AA. Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J Mater Chem A. 2021;9(1):154–95. doi:10.1039/D0TA08132A
Pikalova E, Kolchugin A, Tsvinkinberg V, Sereda V, Khrustov A, Filonova E. Comprehensive study of functional properties and electrochemical performance of layered lanthanum nickelate substituted with rare-earth elements. J Power Sources. 2023;581:233505. doi:10.1016/j.jpowsour.2023.233505
Pikalova E, Kolchugin A, Zakharchuk K, Boiba D, Tsvinkinberg V, Filonova E, Khrustov A, Yaremchenko A. Mixed ionic-electronic conductivity, phase stability and electrochemical activity of Gd-substituted La2NiO4+δ as oxygen electrode material for solid oxide fuel/electrolysis cells. Int J Hydrogen Energy. 2021;46(32):16932–46. doi:10.1016/j.ijhydene.2021.03.007
Pikalova E, Eremeev N, Sadovskaya E, Sadykov V, Tsvinkinberg V, Pikalova N, Kolchugin A, Vylkov A, Baynov I, Filonova E. Influence of the substitution with rare earth elements on the properties of layered lanthanum nickelate – Part 1: Structure, oxygen transport and electrochemistry evaluation. Solid State Ionics. 2022;379:115903. doi:10.1016/j.ssi.2022.115903
Pikalova E, Sadykov V, Tsvinkinberg V, Kolchugin A, Zhulanova T, Guseva E, Eremeev N, Sadovskaya E, Belyaev V, Filonova E. Boosting the oxygen transport kinetics and functional properties of La2NiO4+δ via partial La-to-Sm substitution. J Alloys Compd. 2024;980:173648. doi:10.1016/j.jallcom.2024.173648
Sadykov VA, Sadovskaya EM, Filonova EA, Eremeev NF, Belyaev VD, Tsvinkinberg VA, Pikalova EYu. Oxide ionic transport features in Gd-doped La nickelates. Solid State Ionics. 2020;357:115462. doi:10.1016/j.ssi.2020.115462
Tsvinkinberg VA, Tolkacheva AS, Filonova EA, Gyrdasova OI, Pikalov SM, Vorotnikov VA, Vylkov AI, Moskalenko NI, Pikalova EYu. Structure, thermal expansion and electrical conductivity of La2–xGdxNiO4+δ (0.0 ≤ x ≤ 0.6) cathode materials for SOFC applications. J Alloys Compd. 2021;853:156728. doi:10.1016/j.jallcom.2020.156728
Sadykov VA, Sadovskaya EM, Bespalko YuN, Smal’ EA, Eremeev NF, Prosvirin IP, Bulavchenko OA, Mikhailenko MA, Korobeynikov MV. Structural, Surface and oxygen transport properties of Sm-doped Nd nickelates. Solid State Ionics. 2024;412:116596. doi:10.1016/j.ssi.2024.116596
Sadykov VA, Sadovskaya EM, Bespalko YuN, Smal’ EA, Bulavchenko ON, Eremeev NF, Prosvirin IP, Mikhailenko MA, Korobeynikov MV. Oxygen mobility of samarium doped neodymium nickelates sintered by e-beams. Russ J Electrochem. 2025;61(2):28–39. doi:10.1134/S1023193524601670
Mishchenko DD, Arapova MV, Bespalko YuN, Vinokurov ZS, Shmakov AN. In situ XRD and TGA/DTA study of multiphase La- and Nd-substituted Pr2NiO4 under IT-SOFC cathode operating conditions. J Alloys Compd. 2023;967:171693. doi:10.1016/j.jallcom.2023.171693
Nishimoto S, Takahashi S, Kameshima Y, Matsuda M, Miyake M. Properties of La2−xPrxNiO4 cathode for intermediate-temperature solid oxide fuel cells. J Ceram Soc. 2011;119(1387):246–50. doi:10.2109/jcersj2.119.246
Sharma RK, Khamidy NI, Bassat JM, Djurado E. La2−xPrxNiO4+δ-based efficient SOFC cathodes: Effect of microstructure, composition and architecture. ECS Trans. 2017;78(1):581–91. doi:10.1149/07801.0581ecst
Nikonov AV, Kuterbekov KA, Bekmyrza KZh, Pavzderin NB. A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian J Phys Funct Mater. 2018;2(3):9. doi:10.29317/ejpfm.2018020309
Amow G, Skinner SJ. Recent developments in Ruddlesden–Popper nickelate systems for solid oxide fuel cell cathodes. J Solid State Electrochem. 2006;10(8):538–46. doi:10.1007/s10008-006-0127-x
Garali M, Kahlaoui M, Mohammed B, Mater A, ben Azouz C, Chefi C. Synthesis, characterization and electrochemical properties of La2−xEuxNiO4+δ Ruddlesden-Popper-type layered nickelates as cathode materials for SOFC applications. Int J Hydrogen Energy. 2019;44(21):11020–32. doi:10.1016/j.ijhydene.2019.02.158
Vegard L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Physik. 1921;5(1):17–21. doi:10.1007/BF01349680
Vibhu V, Suchomel MR, Penin N, Weill F, Grenier J C, Bassat J M, Rougier A. Structural transformations of the La2−xPrxNiO4+δ system probed by high-resolution synchrotron and neutron powder diffraction. Dalton Trans. 2019;48(1):266–77. doi:10.1039/C8DT03524E
Ishikawa H, Toyosumi Y, Ishikawa K. Structural phase transition of La2−xNdxNiO4+δ (0.0 ≤ x ≤ 2.0). J Alloys Compd. 2006;408–412:1196–9. doi:10.1016/j.jallcom.2004.12.143
Guseva EM, Ivanov RA, Pikalova EYu, Filonova EA. Modeling of crystal structure parameters in complex-oxide perovskite-like systems. In: Materials of the XIX Russian Conference “Physical Chemistry and Electrochemistry of molten and solid electrolytes”; 2023 Sep 17-21; Ekaterinburg, Russia. p. 188.
Tietz F, Arul Raj I, Zahid M, Stöver D. Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn,Fe,Co)O3−δ. Solid State Ionics. 2006;177(19–25):1753–6. doi:10.1016/j.ssi.2005.12.017
Tietz F. Thermal expansion of SOFC materials. Ionics. 1999;5(1–2):129–39. doi:10.1007/bf02375916
Huang K, Feng M, Goodenough GB, Schmerling M. Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell. J Electrochem Soc. 1996;143(11):3630–6. doi:10.1149/1.1837262
Kagomiya I, Kimura K, Mizuno K. Synthesis and thermal/oxygen permeation characteristics of La0.1Sr0.9Co0.9Fe0.1O3−δ compounds with La-doped ceria as ideal dual-phase composites. Ceram Int. 2025;51(11):14716–22. doi:10.1016/j.ceramint.2025.01.312
Lein HL, Wiik K, Grande T. Thermal and chemical expansion of mixed conducting La0.5Sr0.5Fe1−xCoxO3−δ materials. Solid State Ionics. 2006;177(19–25):1795–8. doi:10.1016/j.ssi.2006.02.033
Corbel G, Mestiri S, Lacorre P. Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor. Solid State Sci. 2005;7(10):1216–24. doi:j.solidstatesciences.2005.05.007
Løken A, Ricote S, Wachowski S. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals. 2018;8(9):365. doi:10.3390/cryst8090365
Radovic M, Lara-Curzio E, Trejo RM, Wang Hm Porter WD. Thermophysical properties of YSZ and Ni-YSZ as a function of temperature and porosity. In: Advances in Solid Oxide Fuel Cells II: Ceramic Engineering and Science Proceedings, Volume 27. Hoboken, NJ: John Wiley & Sons; 2006. pp. 79–85. doi:10.1002/9780470291337.ch8
Hayashi H, Saitou T, Maruyama N, Inaba H, Kawamura K, Mori M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ionics. 2005;176(5–6):613–9. doi:10.1016/j.ssi.2004.08.021
Ochrombel R, Schneider J, Hildmann B, Saruhan B. Thermal expansion of EB-PVD yttria stabilized zirconia. J Eur Ceram Soc. 2010;30(12):2491–6. doi:10.1016/j.jeurceramsoc.2010.05.008
Dayaghi AM, Haugsrud R, Stange M, Larring Y, Strandbakke R, Norby T. Increasing the thermal expansion of proton conducting Y-doped BaZrO3 by Sr and Ce substitution. Solid State Ionics. 2021;359:115534. doi:10.1016/j.ssi.2020.115534
Quarez E, Kravchyk KV, Joubert O. Compatibility of proton conducting La6WO12 electrolyte with standard cathode materials. Solid State Ionics. 2012;216:19–24. doi:10.1016/j.ssi.2011.11.003
Kojo G, Tsukimura R, Otomo J. Structural and transport properties of lanthanum tungstate with high La/W ratio: Suitability for proton-conducting solid oxide fuel cells operating at intermediate temperature. Solid State Ionics. 2017;306:89–96. doi:10.1016/j.ssi.2017.04.009
Kuterbekov KA, Bekmyrza KZ, Kabyshev AM, Kubenova MM, Aidarbekov NK, Nurkenov SA. Investigation of the characteristics of materials with the Ruddlesden-Popper structure for solid oxide fuel cells. Bull Karaganda University Phys Ser. 2022;108(4):32–47. doi:10.31489/2022ph4/32-47
Cheng J, Zhang S, Meng B, Ding J, Tan X. Preparation and the superior oxygen permeability of a new CO2-resistant Ruddlesden–Popper composite oxide Pr2Ni0.9Mo0.1O4+δ. J Alloys Compd. 2018;742:966–76. doi:10.1016/j.jallcom.2018.01.366
Zakharchuk K, Kovalevsky A, Yaremchenko A. Characterization of Ruddlesden-Popper La2−xBaxNiO4±δ nickelates as potential electrocatalysts for solid oxide cells. Materials. 2023;16(4):1755. doi:10.3390/ma16041755
Inprasit T, Limthongkul P, Wongkasemjit S. Sol–gel and solid-state synthesis and property study of La2−xSrxNiO4 (x ≤ 0.8). J Electrochem Soc. 2010;157:B1726. doi:10.1149/1.3489262
Nie HW, Wen TL, Wang SR, Wang YS, Guth U, Vashook V. Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αA′αMO4 (A = Pr, Sm; A′ = Sr; M= Mn, Ni; α = 0.3, 0.6) as a new cathode for SOFC. Solid State Ionics. 2006;177(19–25):1929–32. doi:10.1016/j.ssi.2006.01.003
Kumar U, Upadhyay S. Structural, optical and electrical properties of Ruddlesden Popper oxide Ba2SnO4. J Electron Mater. 2019;48(8):5279–93. doi:10.1007/s11664-019-07336-x
Xu S, Jacobs R, Morgan D. Factors controlling oxygen interstitial diffusion in the Ruddlesden–Popper oxide La2−xSrxNiO4+δ. Chem Mater. 2018;30(20):7166–77. doi:10.1021/acs.chemmater.8b03146
Lee D, Lee HN. Controlling oxygen mobility in Ruddlesden–Popper oxides. Materials. 2017;10(4):368. doi:10.3390/ma10040368
Tealdi C, Ferrara C, Mustarelli P, Saiful Islam M. Vacancy and interstitial oxide ion migration in heavily doped La2−xSrxCoO4±δ. J Mater Chem. 2012;22(18):8969–75. doi:10.1039/C2JM30769C
Forslund RP, Hardin WG, Rong X, Abakumov AM, Filimonov D, Alexander CT, Tyler Mefford J, Iyer H, Kolpak AM, Johnston KP, Stevenson KJ. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexO4±δ Ruddlesden-Popper oxides. Nat Commun. 2018;9:3150. doi:10.1038/s41467-018-05600-y
Meyer TL, Jacobs R, Lee D, Jiang L, Freeland JW, Sohn C, Egami T, Morgan D, Lee HN. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La1.85Sr0.15CuO4. Nat Commun. 2018;9:92. doi:10.1038/s41467-017-02568-z
Kang K, Liu X, Wang C, Yang L, Liu Y. The regulation mechanism of oxygen vacancies in Ruddlesden–Popper perovskite Ln2NiO4 (Ln = La, Pr, Nd) air electrode for reversible protonic solid oxide cells. Small. 2025;2502478. doi:10.1002/smll.202502478
Pikalova E, Kolchugin A, Bogdanovich N, Medvedev D, Lyagaeva J, Vedmid’ L, Ananyev M, Plaksin S, Farlenkov A. Suitability of Pr2−xCaxNiO4+δ as cathode materials for electrochemical devices based on oxygen ion and proton conducting solid state electrolytes. Int J Hydrogen Energy. 2020;45(25):13612–24. doi:10.1016/j.ijhydene.2018.06.023
Skinner SJ, Kilner JA. Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics. 2000;135(1–4):709–12. doi:10.1016/S0167-2738(00)00388-X
Tropin E, Ananyev M, Porotnikova N, Khodimchuk A, Saher S, Farlenkov A, Kurumchin E, Shepel D, Antipov E, Istomin S, Bouwmeester H. Oxygen surface exchange and diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±δ. Phys Chem Chem Phys. 2019;21(9):4779–90. doi:10.1039/C9CP00172G
Istomin SYa, Karakulina OM, Rozova MG, Kazakov SM, Gippius AA, Antipov EV, Bobrikov IA, Balagurov AM, Tsirlin AA, Michau A, Biendicho JJ, Svensson G. Tuning the high-temperature properties of Pr2NiO4+δ by simultaneous Pr- and Ni-cation replacement. RSC Adv. 2016;6(40):33951–8. doi:10.1039/C6RA03099H
Sadykov VA, Pavlova SN, Kharlamova TS, Muzykantov VS, Uvarov NF, Okhlupin YuS, Ishchenko AV, Bobin AS, Mezentseva NV, Alikina GM, Lukashevich AI, Krieger TA, Larina TV, Bulgakov NN, Tapilin VM, Belyaev VD, Sadovskaya EM, Boronin AI, Sobyanin VA, Bobrenok OF, Smirnova AL, Smorygo OL, Kilner JA. Perovskites and their nanocomposites with fluorite-like oxides as materials for solid oxide fuel cells cathodes and oxygen-conducting membranes: Mobility and reactivity of the surface/bulk oxygen as a key factor of their performance. In: Perovskites: Structure, Properties and Uses. Nova Science Publishers; 2010. pp. 67–168.
Sadykov VA, Sadovskaya EM, Eremeev NF, Bobin AS, Fedorova YuE, Muzykantov VS, Mezentseva NV, Alikina GM, Krieger TA, Belyaev VD, Rogov VA, Ulikhin AS, Okhlupin YuS, Uvarov NF, Bobrenok OF, McDonald N, Watton J, Dhir A, Steinberger-Wilckens R, Mertens J, Vinke IC. Cathodic materials for intermediate-temperature solid oxide fuel cells based on praseodymium nickelates-cobaltites. Russ J Electrochem. 2014;50(7):669–79. doi:10.1134/S1023193514070131
Sadykov V, Eremeev N, Alikina G, Sadovskaya E, Muzykantov V, Pelipenko V, Bobin A, Krieger T, Belyaev V, Ivanov V, Ishchenko A, Rogov V, Ulikhin A, Uvarov N, Okhlupin Yu, Mertens J, Vinke I. Oxygen mobility and surface reactivity of PrNi1−xCoxO3+δ–Ce0.9Y0.1O2−δ cathode nanocomposites. Solid State Ionics. 2014;262:707–12. doi:10.1016/j.ssi.2014.01.020
Sadykov VA, Eremeev NF, Vostrikov ZS, Shmakov AN, Kriventsov VV, Lukashevich AI, Krasnov AV, Ishchenko AV. Structural studies of Pr nickelate-cobaltite – Y-doped ceria nanocomposite. J Ceram Sci Technol. 2017;8(1):129–40. doi:10.4416/JCST2016-00099
Sadykov V, Mezentseva N, Arapova M, Krieger T, Gerasimov E, Alikina G, Pelipenko V, Bobin A, Muzykantov V, Fedorova Yu, Sadovskaya E, Eremeev N, Belyaev V, Okhlupin Yu, Uvarov N. Fast oxygen transport in bismuth oxide containing nanocomposites. Solid State Ionics. 2013;251:34–9. doi:10.1016/j.ssi.2013.03.016
Burriel M, Peña-Martínez J, Chater RJ, Fearn S, Berenov AV, Skinner SJ, Kilner JA. Anisotropic oxygen ion diffusion in layered PrBaCo2O5+δ. Chem Mater. 2012;24(3):613–21. doi:10.1021/cm203502s
Kim G, Wang S, Jacobson JA, Reimus L, Brodersen P, Mims CA. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J Mater Chem. 2007;17(24):2500–5. doi:10.1039/B618345J
Bespalko Yu, Eremeev N, Sadovskaya E, Krieger T, Bulavchenko O, Suprun E, Mikhailenko M, Korobeynikov M, Sadykov V. Synthesis and oxygen mobility of bismuth cerates and titanates with pyrochlore structure. Membranes. 2023;13(6):598. doi:10.3390/membranes13060598
Porotnikova N, Khrustov A, Farlenkov A, Khodimchuk A, Partin G, Animitsa I, Kochetova N, Pavlov D, Ananyev M. Promising La2Mo2O9–La2Mo3O12 composite oxygen-ionic electrolytes: Interphase phenomena. ACS Appl Mater Interfaces. 2022;14(4):6180–93. doi:10.1021/acsami.1c20839
Thoréton V, Hu Y, Pirovano C, Capoen E, Nuns N, Mamede AS, Dezanneau G, Yoo CY, Bouwmeester HJM, Vannier RN. Oxygen transport kinetics of the misfit layered oxide Ca3Co4O9+δ. J Mater Chem A. 2014; 2(46):19717–25. doi:10.1039/C4TA02198C
Hu Y, Thoréton V, Pirovano C, Capoen E, Bogicevic C, Nuns N, Mamede A S, Dezanneau G, Vannier RN. Oxide diffusion in innovative SOFC cathode materials. Faraday Discuss. 2014;176:31–47. doi:10.1039/C4FD00129J
Murch GE. The Nernst-Einstein equation in high-defect content solids. Philos Mag A. 1982;45(4):685–92. doi:10.1080/01418618208236198
Takamura H, Kobayashi J, Takahashi N, Okada M. Electrical conductivity of ceria nanoparticles under high pressure. J Electroceram. 2009;22(1–3):24–32. doi:10.1007/s10832-008-9432-3
Qi X, Lin YS, Holt CT, Swartz SL. Electric conductivity and oxygen permeability of modified cerium oxides. J Mater Sci. 2003;38(5):1073–9. doi:10.1023/A:1022310200205
Flura A, Nicollet C, Vibhu V, Zeimetz B, Rougier A, Bassat J M, Grenier J C. Application of the Adler-Lane-Steele model to porous La2NiO4+δ SOFC cathode: Influence of interfaces with gadolinia doped ceria. J Electroch Soc. 2016;163(6):F523–32. doi:10.1149/2.0891606jes
Hildenbrand N, Nammensma P, Blank DH, Bouwmeester HJ, Boukamp BA. Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells cathodes. Journal Power Sources. 2013;238:442–53. doi:10.1016/j.jpowsour.2013.03.192
Yakal-Kremski K, Mogni LV, Montenegro-Hernández A, Caneiro A, Barnett SA. Determination of electrode oxygen transport kinetics using electrochemical impedance spectroscopy combined with three-dimensional microstructure measurement: application to Nd2NiO4+δ. J Electrochem Soc. 2014;161(14):F1366–74. doi:10.1149/2.0521414jes
Chowdhury NR, Kant R. Theory of generalized Gerischer impedance for quasi-reversible charge transfer at rough and finite fractal electrodes. Electrochim Acta. 2018;281:445-58. doi:10.1016/j.electacta.2018.05.140
Boukamp BA, Bouwmeester HJ. Interpretation of the Gerischer impedance in solid state ionics. Solid State Ionics. 2003;157(1–4):29–33. doi:10.1016/S0167-2738(02)00185-6
Zhao C, Zhou Q, Zhang T, Qu L, Yang X, Wei T. Preparation and electrochemical properties of La1.5Pr0.5NiO4 and La1.5Pr0.5Ni0.9Cu0.1O4 cathode materials for intermediate-temperature solid oxide fuel cells. Mater Res Bull. 2019;113:25–30. doi:10.1016/j.materresbull.2019.01.016
Pikalova EYu, Bogdanovich NM, Kolchugin AA, Osinkin DA, Bronin DI. Electrical and electrochemical properties of La2NiO4+δ-based cathodes in contact with Ce0.8Sm0.2O2−δ electrolyte. Procedia Eng. 2014;98:105–10. doi:10.1016/j.proeng.2014.12.495
Sadykov V, Eremeev N, Sadovskaya E, Bobin A, Ishchenko A, Pelipenko V, Fedorova Yu, Lukashevich A, Salanov A, Krieger T, Belyaev V, Rogov V, Muzykantov V, Vinokurov Z, Shmakov A, Bobrenok O, Uvarov N, Ohlupin Yu, Ulikhin A, Mertens J, Vinke IC, Steinberger-Wilckens R, Watton J, Dhir A, McDonalds N. IT SOFC cathodes based on Pr nickelates/cobaltites: design and performance. In: Proceedings of the 11th European SOFC and SOE Forum; 2014 July1–4; Lucerne, Switzerland; pp. 20–8.
Wei Y, Yang W, Caro J, Wang H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chem Eng J. 2013;220:185–203. doi:10.1016/j.cej.2013.01.048
Gilev AR, Kiselev EA, Cherepanov VA. Homogeneity range, oxygen non-stoichiometry, thermal expansion and transport properties of La2−xSrxNi1−yFeyO4+δ. RCS Adv. 2016;6(77):72905–17. doi:10.1039/C6RA13335E
Xue J, Liao Q, Chen W, Bouwmeester HJM, Wang H, Feldhoff A. A new CO2-resistant Ruddlesden–Popper oxide with superior oxygen transport: A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ. J Mater Chem A. 2015; 3(37):19107–14. doi:10.1039/C5TA02514A
Yashima M, Sirikanda N, Ishihara T. Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ. J Am Chem Soc. 2010;132(7):2385–92. doi:10.1021/ja909820h
Chen G, Widenmeyer M, Tang B, Kaeswurm L, Wang L, Feldhoff A, Weidenkaff A. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Fron Chem Sci Eng. 2020;14(3):405–14. doi:10.1007/s11705-019-1886-0
Tang J, Wei Y, Zhou L, Li Z, Wang H. Oxygen permeation through a CO2‐tolerant mixed conducting oxide (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ. AIChE J. 2012;58(8):2473–8. doi:10.1002/aic.12742
Gędziorowski B, Cichy K, Niemczyk A, Olszewska A, Zhang Z, Kopeć S, Zheng K, Marzec M, Gajewska M, Du Z, Zhao H. Ruddlesden-Popper-type Nd2−xNi1−yCuyO4±δ layered oxides as candidate materials for MIEC-type ceramic membranes. J Eur Ceram Soc. 2020;40(12):4056–66. doi:10.1016/j.jeurceramsoc.2020.04.054
Zakharchuk K, Bamburov A, Naumovich EN, Vieira MA, Yaremchenko AA. Impact of silica additions on the phase composition and electrical transport properties of Ruddlesden–Popper La2NiO4+δ mixed conducting ceramics. Processes. 2022;10(1):82. doi:10.3390/pr10010082
Kusaba H, Shibata Y, Sasaki K, Teraoka Y. Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide. Solid State Ionics. 2006;177(26–32):2249–53. doi:10.1016/j.ssi.2006.05.038
Teraoka Y, Honbe Y, Ishii J, Furukawa H, Moriguchi I. Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes. Solid State Ionics. 2002;152–3:681–7. doi:10.1016/S0167-2738(02)00409-5
Kovalevsky AV, Yaremchenko AA, Kolotygin VA, Shaula AL, Kharton VV, Snijkers FMM, Buekenhoudt A, Frade JR, Naumovich EN. Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci. 2011;380(1–2):68–80. doi:10.1016/j.memsci.2011.06.034
Zhu X, Yang W, Kharton VV. Mixed Conducting Ceramic Membranes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017. 367 p. doi:10.1007/978-3-662-53534-9
doi:10.1016/S0009-2509(99)00015-9
doi:10.1016/S0167-2738(03)00027-4
doi:10.1016/j.solidstatesciences.2005.08.005
doi:10.1016/j.jssc.2018.03.020
doi:10.1016/j.ssi.2009.01.005
doi:10.1016/j.ceramint.2024.05.179
doi:10.1016/j.ijhydene.2022.11.175
doi:10.1016/j.ceramint.2020.06.217
doi:10.1016/j.cplett.2025.142219
doi:10.1016/j.jallcom.2025.179046
doi:10.2109/jcersj2.19028
doi:10.1016/j.ssi.2021.115594
doi:10.1179/1743676114Y.0000000203
doi:10.1016/j.jpowsour.2020.228909
doi:10.1016/j.apcatb.2024.124522
doi:10.1016/j.fuel.2025.135812
doi:10.1021/acs.inorgchem.8b00661
doi:10.1021/acs.inorgchem.4c00399
doi:10.1002/fuce.202300037
doi:10.1007/s10854-019-02604-2
doi:10.1016/j.jallcom.2024.174369
doi:10.1021/acssuschemeng.1c03538
doi:10.1016/j.ceramint.2024.03.112
doi:10.1016/j.ijhydene.2025.04.356
doi:10.1002/aesr.202300084
doi:10.1134/S1063783421050218
doi:10.1016/j.ijhydene.2013.06.073
doi:10.1016/j.cjche.2022.08.023
doi:10.1016/j.materresbull.2020.110986
doi:10.1016/j.jpowsour.2022.232220
doi:10.1016/j.fuel.2024.133430
DOI: https://doi.org/10.15826/chimtech.2025.12.3.04
Copyright (c) 2025 Vladislav Sadykov, Ekaterina Sadovskaya, Nikita Eremeev, Alexander Kolchugin, Elena Filonova, Viktor Tsvinkinberg, Tatyana Zhulanova, Elena Pikalova

This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice