Cover Image

Novel materials based on Ruddlesden–Popper phases for solid oxide fuel cells and oxygen separation membranes: Fundamentals of oxygen transport

Vladislav Sadykov, Ekaterina Sadovskaya, Nikita Eremeev, Alexander Kolchugin, Elena Filonova, Viktor Tsvinkinberg, Tatyana Zhulanova, Elena Pikalova

Abstract


In the field of modern hydrogen energy, obtaining pure hydrogen and syngas and then being able to use them for green energy production are significant problems. Developing solid oxide fuel cells (SOFC) and catalytic membranes for oxygen separation as well as materials for these devices is one of the most likely ways to solve these problems. First-order Ruddlesden–Popper phases are important materials for such devices. In this review, fundamentals of developing such materials for SOFC cathodes and oxygen separation membranes’ permselective layers based on research of their oxygen mobility and surface reactivity are presented. For Ruddlesden–Popper phases Ln2−xMxNiO4+δ, Ln2−xCaxNi1−yCuyO4+δ, and Ln2−xLn’xNiO4+δ (Ln = La, Pr, Nd; Ln’ = Pr, Nd, Sm, Eu, Gd; M = Ca, Sr, Ba) a high oxygen mobility is shown (D* ~ 10−7 cm2/s at 700 °C) by isotope exchange of oxygen techniques, being provided by the cooperative mechanism of oxygen migration involving both regular and highly-mobile interstitial oxygen. After optimization of composition and nanodomain structure of these materials, as cathodes of SOFC they provided a high power density, while for asymmetric supported oxygen separation membranes – a high oxygen permeability. Hence, the application of mixed ionic-electronic materials with high oxygen mobility and surface reactivity and optimized structural, morphological and textural properties is a promising approach in the design of SOFC cathodes and oxygen separation membranes.

Keywords


solid oxide fuel cells; oxygen separation membranes; oxygen transport; isotope exchange of oxygen; diffusion; Ruddlesden–Popper phases

Full Text:

PDF

References


Hossain Bhuiyan MM, Siddique Z. Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation. Int J Hydrogen Energy. 2025;102:1026–44. doi:10.1016/j.ijhydene.2025.01.033

Du A, Li H, Yan Z, Han Y, Wu X. Review on the controversies surrounding hydrogen together with its leakage and escape throughout the full lifecycle. Sustain Energy Fuels. 2025;9(6):1399–413. doi:10.1039/D4SE01554A

Bampaou M, Panopoulos KD. An overview of hydrogen valleys: Current status, challenges and their role in increased renewable energy penetration. Renew Sustain Energy Rev. 2025;207:114923.doi:10.1016/j.rser.2024.114923

Yang J, Lam TY, Luo Z, Cheng Q, Wang G, Yao H. Renewable energy driven electrolysis of water for hydrogen production, storage, and transportation. Renew Sustain Energy Rev. 2025;218:115804. doi:10.1016/j.rser.2025.115804

Luo G, Zhao Z T, Ding J, Yang S S, Yu X L, Bao M Y, Sun H J, Pang J W, Zhang L Y, Ren N Q. Comparative review of carbon emissions from hydrogen production technologies: The hydrogen color characteristic of biomass-based manufacturing. Renew Sustain Energy Rev. 2025;217:115756. doi:10.1016/j.rser.2025.115756

Qiuchen Z, Ping Z, Xiqiang Z. Challenges and opportunities of microwave technology in hydrogen production, storage and utilization: A review. Int J. Hydrogen Energy. 2025;134:283–98. doi:10.1016/j.ijhydene.2025.04.505

Oliveira MLM, Alves CMAC, Andrade CF, de Azevedo, DCS, Lobo FL, Fuerte A, Ferreira-Aparicio P, Caravaca C, Valenzuela RX. Recent progress and perspectives on functional materials and technologies for renewable hydrogen production. ACS Omega. 2025;10(4):3282–303. doi:10.1021/acsomega.4c10407

Hu T, Song Y, Zhang X, Lin S, Liu P, Zheng C, Gao X. A mini review for hydrogen production routes toward carbon neutrality. Propul Energy. 2025;1(1):1. doi:10.1007/s44270-024-00004-4

Tasleem S, Alsharaeh EH. Role of green, yellow, blue, white and gold hydrogen in fuelling the path to net zero and sustainable future- A review. Energy Convers Manage. 2025;326:119500. doi:10.1016/j.enconman.2025.119500

Cui J, Meng G, Zhang K, Zuo Z, Song X, Zhao Y, Luo S. Research progress on energy-saving technologies and methods for steel metallurgy process systems—A review. Energies. 2025;18(10):2473. doi:10.3390/en18102473

Sun M, Pang K, Barati M, Meng X. Hydrogen-based reduction technologies in low-carbon sustainable ironmaking and steelmaking: A review. J Sustain Metall. 2024;10:10–25. doi:10.1007/s40831-023-00772-4

Nami H, Hendriksen PV, Frandsen HL. Green ammonia production using current and emerging electrolysis technologies. Renew Sustain Energy Rev. 2024;199:114517. doi:10.1016/j.rser.2024.114517

Ishaq H, Crawford C. Review of ammonia production and utilization: Enabling clean energy transition and net-zero climate targets. Energy Convers Manage. 2024;300:117869. doi:10.1016/j.enconman.2023.117869

Wang R, Yang X, Chen X, Zhang X, Chi Y, Zhang D, Chu S, Zhou P. A critical review for hydrogen application in agriculture: Recent advances and perspectives. Crit Rev Environ Sci Technol. 2024;54(3):222–38. doi:10.1080/10643389.2023.2232253

Szablowski L, Wojcik M, Dybinski O. Review of steam methane reforming as a method of hydrogen production. Energy. 2025;316:134540. doi:10.1016/j.energy.2025.134540

Nakkeeran K, Victor K. Grey and blue hydrogen: Insights into production technologies and outlook on CO2-free alternatives. Sustain Energy Technol Assess. 2025;75:104222. doi:10.1016/j.seta.2025.104222

Ganguli A, Bhatt V. Hydrogen production using advanced reactors by steam methane reforming: A review. Front Therm Eng. 2023;3:1143987. doi:10.3389/fther.2023.1143987

Saeidi S, Sápi A, Khoja AH, Najari S, Ayesha M, Kónya Z, Asare-Bediako BB, Tatarczuk A, Hessel V, Keil FJ, Rodrigues AE. Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments. Renew Sustain Energy Rev. 2023;183:113392. doi:10.1016/j.rser.2023.113392

Li A, Chu J, Huang S, Liu Y, He M, Liu X. Machine learning-assisted development of gas separation membranes: A review. Carbon Capture Sci Technol. 2025;14:100374. doi:10.1016/j.ccst.2025.100374

Prasetya N, Wenten IG, Ladewig BP. Advances in membranes from microporous materials for hydrogen separation from light gases. Energy Environ Mater. 2025;8(2):e12843. doi:10.1002/eem2.12843

Harkou E, Wang H, Manos G, Constantinou A, Tang J. Advances in catalyst and reactor design for methanol steam reforming and PEMFC applications. Chem Sci. 2025;16(9):3810–31. doi:10.1039/D4SC06526C

Richard S, Olivier P, Jegoux M, Makhloufi C, Gallucci F. Membrane reactors technologies for e-fuel production & processing: A review. Int J Hydrogen Energy. 2025;112:446–67. doi:10.1016/j.ijhydene.2025.01.361

Saud IH, AlJaberi FY. The most effective techniques of industrial purification processes: A technical review. Chim Tech Acta. 2023;10(4):202310403. doi:10.15826/chimtech.2023.10.4.03

Jiang P, Feng Z, Wang X. Palladium-related metallic membranes for hydrogen separation and purification: A review. Fuel. 2025;386:134192. doi:10.1016/j.fuel.2024.134192

Zhang Z, Zhou W, Wang T, Gu Z, Zhu Y, Liu Z, Wu Z, Zhang G, Jin W. Ion–conducting ceramic membrane reactors for the conversion of chemicals. Membranes. 2023;13(7):621. doi:10.3390/membranes13070621

Belousov VV. Oxygen separation diffusion-bubbling membranes. Phys Chem Chem Phys. 2023;25(21):14686–94. doi:10.1039/D3CP00283G

Ding X, Wang F, Lin G, Tang B, Li X, Zhou G, Wang W, Zhang J, Shi Y. The enhancement of separation performance of hollow fiber membrane modules: From the perspective of membranes and membrane modules structural optimization design. Chem Eng Sci. 2023;280:119106. doi:10.1016/j.ces.2023.119106

Anand C, Chandraja B, Nithiya P, Akshaya M, Tamizhdurai P, Shoba G, Subramani A, Kumaran R, Yadav KK, Gacem A, Bhutto JK, Awjan Alreshidi M, Waqas Alam M. Green hydrogen for a sustainable future: A review of production methods, innovations, and applications. Int J Hydrogen Energy. 2025;111:319–41. doi:10.1016/j.ijhydene.2025.02.257

Shan R, Kittner N. Sector-specific strategies to increase green hydrogen adoption. Renew Sustain Energy Rev. 2025;214:115491. doi:10.1016/j.rser.2025.115491

Lotfollahzade Moghaddam A, Hejazi S, Fattahi M, Kibria MdG, Thomson MJ, AlEisa R, Khan MA. Methane pyrolysis for hydrogen production: Navigating the path to a net zero future. Energy Environ Sci. 2025;18(6):2747–90. doi:10.1039/D4EE06191H

Patlolla SP, Katsu K, Sharafian A, Wei K, Herrera OE, Mérida W. A review of methane pyrolysis technologies for hydrogen production. Renew Sustain Energy Rev. 2023;181:113323. doi:10.1016/j.rser.2023.113323

Tanimu A, Yusuf BO, Lateef S, Tanimu G, Alhassan AM, Azeez MO, Alhooshani K, Ganiyu SA. Dry reforming of methane: Advances in coke mitigation strategies via siliceous catalyst formulations. J Environ Chem Eng. 2024;12(5):113873. doi:10.1016/j.jece.2024.113873

Shafiqah M NN, Siang TJ, Kumar PS, Ahmad Z, Bahari MB, Le QV, Xiao L, Mofijur M, Xia C, Ahmed SF, Vo D VN. Advanced catalysts and effect of operating parameters in ethanol dry reforming for hydrogen generation. A review. Environ Chem Lett. 2022;20(3):1695–717. doi:10.1007/s10311-022-01394-0

Liew WM, Ainirazali N. Cutting-edge innovations in bio-alcohol reforming: Pioneering pathways to high-purity hydrogen: A review. Energy Convers Manage. 2025;326:119463. doi:10.1016/j.enconman.2024.119463

Hasanpour A, Fazlinezhad A, Tabazadeh A. Physicochemical characteristics, process optimization, and energy efficiency of hydrogen production from methanol, ethanol, and glycerol: A comparative review. Eurasian J Chem Med Pet Res. 2025;4:267–85. doi:10.5281/zenodo.14735496

Manzo D, Thai R, Le HT, Venayagamoorthy GK. Fuel cell technology review: Types, economy, applications, and vehicle-to-grid scheme. Sustain Energy Technol Assess. 2025;75:104229. doi:10.1016/j.seta.2025.104229

Tofighi-Milani M, Fattaheian-Dehkordi S, Lehtonen M. Electrolysers: A review on trends, electrical modeling, and their dynamic responses. IEEE Access. 2025;13:39870–85. doi:10.1109/ACCESS.2025.3546546

Osinkin DA. Some aspects of hydrogen oxidation in solid oxide fuel cell: A brief historical overview. Electrochem Mater Technol. 2023;2(3):20232018. doi:10.15826/elmattech.2023.2.018

Singh M, Paydar S, Singh AK, Singhal R, Singh A, Singh M. Recent advancement of solid oxide fuel cells towards semiconductor membrane fuel cells. Energy Mater. 2024;4(1):400012. doi:10.20517/energymater.2023.54

Zhang Z, Du H, Xu K, Zhang X, Ma X, Shuai S. Review of the application of metal-supported solid oxide fuel cell in the transportation field. Automot Innov. 2025. [Cited 2025] doi:10.1007/s42154-024-00316-w

Dunyushkina LA. Field-assisted sintering of refractory oxygen-ion and proton conducting ceramics. Electrochem Mater Technol. 2024;3(3):20243040. doi:10.15826/elmattech.2024.3.040

Sadykov VA, Mezentseva NV, Bobrova LN, Smorygo OL, Eremeev NF, Fedorova YuE, Bespalko YuN, Skriabin PI, Krasnov AV, Lukashevich AI, Krieger TA, Sadovskaya EM, Belyaev VD, Shmakov AN, Vinokurov ZS, Bolotov VA, Tanashev YuYu, Korobeynikov MV, Mikhailenko MA. Advanced materials for solid oxide fuel cells and membrane catalytic reactors. In: Advanced Nanomaterials for Catalysis and Energy. Elsevier; 2019. pp. 435–514. doi:10.1016/B978-0-12-814807-5.00012-7

Sadykov VA, Sadovskaya EM, Eremeev NF, Skriabin PI, Krasnov AV, Bespalko YuN, Pavlova SN, Fedorova YuE, Pikalova EYu, Shlyakhtina AV. Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review). Russ J Electrochem. 2019;55(8):701–18. doi:10.1134/S1023193519080147

Sadykov VA, Muzykantov VS, Yeremeev NF, Pelipenko VP, Sadovskaya EM, Bobin AS, Fedorova YuE, Amanbaeva DG, Smirnova AL. Solid oxide fuel cell cathodes: Importance of chemical composition and morphology. Catal Sustain Energy. 2015;2(1):57–70.doi:10.1515/cse-2015-0004

Humayun M, Li Z, Israr M, Khan A, Luo W, Wang C, Shao Z. Perovskite type ABO3 oxides in photocatalysis, electrocatalysis, and solid oxide fuel cells: State of the art and future prospects. Chem Rev. 2025;125(6):3165–241. doi:10.1021/acs.chemrev.4c00553

Zhu H, Li J, Zhang J. Recent advances in spinel-based protective coatings on metallic interconnects for solid oxide fuel cells from the perspective of coating design. Int J Hydrogen Energy. 2025;113:26–38. doi:10.1016/j.ijhydene.2025.02.433

Guo Z, Xu L, Ling Y, Wang P, Wei K, Qiu P. A perspective on cathode materials for proton-conducting solid oxide fuel cells. Int J Hydrogen Energy. 2025;106:52–64. doi:10.1016/j.ijhydene.2025.01.461

Yuan Q, Wang W, Li B, Li H, Zhang X, Chen G. Electrospinning of porous fiber-electrode materials for solid oxide fuel cells: Fundamentals and challenges. J Power Sources. 2025;625:235616. doi:10.1016/j.jpowsour.2024.235616

Jia Y, Lan X, Fan H. Recent advances in cathode materials for solid oxide fuel cell. Ceram Int. 2025;51(11):13697–712. doi:10.1016/j.ceramint.2025.01.229

Nikiforakis I, Mamalis S, Assanis D. Understanding solid oxide fuel cell hybridization: A critical review. Appl Energy. 2025;377C:124277. doi:10.1016/j.apenergy.2024.124277

Mageto T, Bhoyate S, Kumar A, Gupta RK. Progress, challenges, and prospects with electrocatalyst (From transition metal oxides to dual-atom catalysts) for oxygen reduction reaction. Mol Catal. 2024;562:114196. doi:10.1016/j.mcat.2024.114196

Chun O, Jamshaid F, Khan MZ, Gohar O, Hussain I, Zhang Y, Zheng K, Saleem M, Motola M, Hanif MB. Advances in low-temperature solid oxide fuel cells: An explanatory review. J Power Sources. 2024;610:234719. doi:10.1016/j.jpowsour.2024.234719

Kim JH, Kim D, Ahn S, Kim KJ, Jeon S, Lim DK, Kim JK, Kim U, Im HN, Koo B, Lee KT. An universal oxygen electrode for reversible solid oxide electrochemical cells at reduced temperatures. Energy Environ Sci. 2023;16(9):3803–14. doi:10.1039/D2EE04108A

Tarutin AP, Filonova EA, Ricote S, Medvedev DA, Shao Z. Chemical design of oxygen electrodes for solid oxide electrochemical cells: A guide. Sustain Energy Technol Assess. 2023;57:103185. doi:10.1016/j.seta.2023.103185

Chen G, Widenmeyer M, Yu X, Han N, Homm G, Liu S, Weidenkaff A. Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. J Am Ceram Soc. 2024;107(3):1490–504. doi:10.1111/jace.19411

Singh R, Prasad B, Ahn Y H. Recent developments in gas separation membranes enhancing the performance of oxygen and nitrogen separation: A comprehensive review. Gas Sci Eng. 2024;123:205256. doi:10.1016/j.jgsce.2024.205256

Sadykov VA, Sadovskaya EM, Eremeev NF, Pikalova EYu, Bogdanovich NM, Filonova EA, Krieger TA, Fedorova YuE, Krasnov AV, Skriabin PI, Lukashevich AI, Steinberger-Wilckens R, Vinke IC. Novel materials for solid oxide fuel cells cathodes and oxygen separation membranes: Fundamentals of oxygen transport and performance. Carbon Resour Convers. 2020;3:112–121. doi:10.1016/j.crcon.2020.08.002

Tarasova N, Hanif MB, Janjua NK, Anwar S, Motola M, Medvedev D. Fluorine-insertion in solid oxide materials for improving their ionic transport and stability. A brief review. Int J Hydrogen Energy. 2024;50C:104–23. doi:10.1016/j.ijhydene.2023.08.074

Ndubuisi A, Abouali S, Singh K, Thangadurai V. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes. J Mater Chem A 2022;10(5):2196–227. doi:10.1039/D1TA08475E

Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev. 2004;104(10):4791–844. doi:10.1021/cr020724o

Adler SB, Lane JA, Steele BCH. Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc. 1996;143(11):3554–64. doi:10.1149/1.1837252

Sadykov V, Pikalova E, Sadovskaya E, Shlyakhtina A, Filonova E, Eremeev N. Design of mixed ionic-electronic materials for permselective membranes and solid oxide fuel cells based on their oxygen and hydrogen mobility. Membranes. 2023;13(8):698. doi:10.3390/membranes13080698

Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens P. Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4+δ oxides. Solid State Ionics. 2005;176(37–38):2717–25. doi:10.1016/j.ssi.2005.06.033

Huang Q A, Hui R, Wang B, Zhang J. A review of AC impedance modeling and validation in SOFC diagnosis. Electrochim Acta. 2007;52(28):8144–64. doi:10.1016/j.electacta.2007.05.071

Desta HG, Gebreslassie G, Zhang J, Lin B, Zheng Y, Zhang J. Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering. Prog. Mater. Sci. 2025;147:101353. doi:10.1016/j.pmatsci.2024.101353

Yang G, Jung W, Ahn S J, Lee D. Controlling the oxygen electrocatalysis on perovskite and layered oxide thin films for solid oxide fuel cell cathodes. Appl. Sci. 2019;9(5):1030. doi:10.3390/app9051030

Ghamarinia M, Babaei A, Zamani C, Aslannejad H. Application of the distribution of relaxation time method in electrochemical analysis of the air electrodes in the SOFC/SOEC devices: A review. Chem Eng J Adv. 2023;15:100503. doi:10.1016/j.ceja.2023.100503

Casadio S, Gondolini A, Mercadelli E, Sanson A. Advances and prospects in manufacturing of ceramic oxygen and hydrogen separation membranes. Renew Sustain Energy Rev. 2024;200:114600. doi:10.1016/j.rser.2024.114600

Alami AH, Alashkar A, Abdelkareem MA, Rezk H, Masdar MS, Olabi AG. Perovskite membranes: Advancements and challenges in gas separation, production, and capture. Membranes. 2023;13(7):661. doi:10.3390/membranes13070661

Egorova A, Belova K, Animitsa I. Doping effects on the structure, transport properties, and chemical stability of LaInO3 perovskite: A review. Chim Tech Acta. 2025;12(1):12111. doi:10.15826/chimtech.2025.12.1.11

Fop S. Solid oxide proton conductors beyond perovskites. J Mater Chem A. 2021;9(35):18836–56. doi:10.1039/d1ta03499e

Tang H, Gong Z, Wu Y, Jin Z, Liu W. Electrochemical performance of nanostructured LNF infiltrated onto LNO cathode for BaZr0.1Ce0.7Y0.2O3−δ–based solid oxide fuel cell. Int J Hydrogen Energy. 2018;43(42):19749–56. doi:10.1016/j.ijhydene.2018.09.008

Yılmaz EE, Koşma EB, Figen HE, Karaismailoğlu Elibol M. Physicochemical characterization of calcium-doped barium zirconate perovskites for hydrogen-induced systems and their life cycle assessment. Int J Hydrogen Energy. 2025. [Cited 2025] doi:10.1016/j.ijhydene.2025.01.313

Sadykov V, Sadovskaya E, Eremeev N, Pikalova E, Bogdanovich N, Filonova E, Fedorova Yu, Krasnov A, Skriabin P, Lukashevich A. Design of materials for solid oxide fuel cells cathodes and oxygen separation membranes based on fundamental studies of their oxygen mobility and surface reactivity. E3S Web Conf. 2019;116:00068. doi:10.1051/e3sconf/201911600068

Morales-Zapata MA, Larrea A, Laguna-Bercero MA. Lanthanide nickelates for their application on solid oxide cells. Electrochim Acta. 2023;444:141970. doi:10.1016/j.electacta.2023.141970

Yatoo M, Seymoor ID, Skinner SJ. Neutron diffraction and DFT studies of oxygen defect and transport in higher-order Ruddlesden–Popper phase materials. RSC Adv. 2023;13(20):13786–97. doi:10.1039/D3RA01772A

Alizad Farzin Y, Mogensen MB, Pirou S, Lund Frandsen H. Perovskite/Ruddlesden-Popper composite fuel electrode of strontium-praseodymium-manganese oxide for solid oxide cells: An alternative candidate. J Power Sources. 2023;580:233450. doi:10.1016/j.jpowsour.2023.233450

Chen X, Zhang J, Thind AS, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan DP, Botana AS, Klie RF, Mitchell JF. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: Discovery of a hidden phase with distinctive layer stacking. J Am Chem Soc. 2024;146(6):3640–5. doi:10.1021/jacs.3c14052

Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, Qi Y. Effects of pressure and doping on Ruddlesden-Popper phases Lan+1NinO3n+1. J Mater Sci Technol. 2024;185:147–54. doi:10.1016/j.jmst.2023.11.011

Vereshchagin S, Dudnikov V. Empirical analysis of stability of An+1BnO3n+1 Ruddlesden–Popper phases using reciprocal n-values. Crystals. 2024;14(11):954. doi:10.3390/cryst14110954

Bernardini F, Fiebig M, Cano A. Ruddlesden–Popper and perovskite phases as a material platform for altermagnetism. J Appl Phys. 2025;137(10):103903. doi:10.1063/5.0252836

Ferchaud C, Grenier J C, Zhang-Steenwinkel Y, van Tuel MMA, van Berkel FPF, Bassat, J-M. High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell. J Power Sources. 2011;196(4):1872–9. doi:10.1016/j.jpowsour.2010.09.036

Zhou X D, Templeton JW, Nie Z, Chen H, Stevenson JW, Pederson LR. Electrochemical performance and stability of the cathode for solid oxide fuel cells: V. High performance and stable Pr2NiO4 as the cathode for solid oxide fuel cells. Electrochim Acta. 2012;71:44–9. doi:10.1016/j.electacta.2012.03.067

Meng X, Lü S, Liu S, Liu X, Sui Y, Li X, Pang M, Wang B, Ji Y, Hu MZ. Electrochemical characterization of B-site cation-excess Pr2Ni0.75Cu0.25Ga0.05O4+δ cathode for IT-SOFCs. Ceram Int. 2015;41(9B):12107–14. doi:10.1016/j.ceramint.2015.06.028

Amow G, Davidson IJ, Skinner IJ. A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications. Solid State Ionics. 2006;177(13–14):1205–10. doi:10.1016/j.ssi.2006.05.005

Pikalova EYu, Guseva EM, Filonova EA. Short review on recent studies and prospects of application of rare-earth-doped La2NiO4+δ as air electrodes for solid oxide electrochemical cells. Electrochem Mater Technol. 2024;2(4):20232025. doi:10.15826/elmattech.2023.2.025

Gu C Y, Wu X S, Cao J F, Hou J, Miao L N, Xia Y P, Fu C, Liu W. High performance Ca-containing La2−xCaxNiO4+δ (0 ≤ x ≤ 0.75) cathode for proton-conducting solid oxide fuel cells. Int J Hydrogen Energy. 2020;45(43):23422–32. doi:10.1016/j.ijhydene.2020.06.106

Han Z, Bai J, Chen X, Zhu X, Zhou D. Novel cobalt-free Pr2Ni1−xNbxO4 (x = 0, 0.05, 0.10, and 0.15) perovskite as the cathode material for IT-SOFC. Int J Hydrogen Energy. 2021;46(21):11894–907. doi:10.1016/j.ijhydene.2021.01.045

Tarutin AP, Gilev AR, Baratov SA, Vdovin GK, Medvedev DA. Ba-doped Pr2NiO4+δ electrodes for proton-conducting electrochemical cells. Part 3: Electrochemical applications. Int J Hydrogen Energy. 2024;60:261–71. doi:10.1016/j.ijhydene.2024.02.173

Yatoo MA, Skinner SJ. Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review. Mater Today Proc. 2022;56(6):3747–54. doi:10.1016/j.matpr.2021.12.537

Escobar Cano G, Matsuda M, Zhao Z, Steinbach F, Breidenstein B, Petersen H, Graff A, Widenmeyer M, Weidenkaff A, Feldhoff A. Tailoring the anisotropic oxygen transport properties in bulk ceramic membranes based on a Ruddlesden–Popper oxide by applying magnetic fields. Adv Sci. 2025;12(12):2411251. doi:10.1002/advs.202411251

Geffroy P M, Reichmann M, Chartier T, Bassat J M, Grenier J C. Evaluating oxygen diffusion, surface exchange and oxygen semi-permeation in Ln2NiO4+δ membranes (Ln = La, Pr and Nd). J Membr Sci. 2014;451:234–42. doi:10.1016/j.memsci.2013.08.035

Ishihara T, Miyoshi S, Furuno T, Sanguanruang O, Matsumoto H. Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxide. Solid State Ionics. 2006;177(35–36):3087–91. doi:10.1016/j.ssi.2006.08.013

Ishihara T, Sirikanda N, Nakashima K, Miyoshi S, Matsumoto H. Mixed oxide ion and hole conductivity in Pr2−αNi0.76−xCu0.24GaxO4+δ membrane. J Electrochem Soc. 2010;157(1):B141–6. doi:10.1149/1.3251004

Miyoshi S, Furuno T, Sanguanruang O, Matsumoto H, Ishihara T. Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxides. J Electrochem Soc. 2007;154(1):B57–B62. doi:10.1149/1.2387103

Yang S, Liu G, Li W, Sabolsky EM, Liu X, Zhong Y. Ab initio study on the effect of A-site doping on the stability, equilibrium volume, activation energy barrier, and oxygen diffusivity in La2−xAxNiO4+δ. Int J Hydrogen Energy. 2025;119:235–51. doi:10.1016/j.ijhydene.2025.03.239

Li X, Benedek NA. Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain. Chem. Mater. 2015;27(7):2647–52. doi:10.1021/acs.chemmater.5b00445

Minervini L, Grimes RW, Kilner JA, Sickafus KE.Oxygen migration in La2NiO4+δ. J Mater Chem. 2000;10(10):2349–54. doi:10.1039/B004212I

Kushima A, Parfitt D, Chroneos A, Yildiz B, Kilner JA, Grimes RW. Interstitialcy diffusion of oxygen in tetragonal La2CoO4+δ. Phys Chem Chem Phys. 2011;13(6):2242–9. doi:10.1039/C0CP01603A

Eisbacher-Lubensky S, Egger A, Sitte W, Bucher E. Oxygen exchange and transport properties of the first-order Ruddlesden-Popper phase La2Ni0.9Co0.1O4+δ. Solid State Ionics. 2023;397:116255. doi:10.1016/j.ssi.2023.116255

Yang G, El Loubani M, Hill D, Keum JK, Lee D. Control of crystallographic orientation in Ruddlesden-Popper for fast oxygen reduction. Catal Today. 2023;409:87–93. doi:10.1016/j.cattod.2022.04.022

Lian S, He L, Li C, Ren J, Bi L, Chen M, Lin Z. Uncovering the enhancement mechanism of the oxygen reduction reaction on perovskite/Ruddlesden–Popper oxide heterostructures (Nd,Sr)CoO3/(Nd,Sr)2CoO4 and (Nd,Sr)CoO3/(Nd,Sr)3Co2O7. J Phys Chem Lett. 2023;14(11):2869–77. doi:10.1021/acs.jpclett.2c03333

Li P, Yang Q, Wu H, Shang J, Yan F, Tong X, Gan T, Wang L. Oxygen vacancy engineering in Cu-doped Ruddlesden–Popper oxides for reversible solid oxide cells. Energy Fuels. 2025;39(14):7047–56. doi:10.1021/acs.energyfuels.5c00422

Shan P, Ye H, Chen Z, Qian B, Zhou C, Yang H, Zheng Y. Anionic engineering of the Ruddlesden-Popper oxide La2NiO4+δ: Targeted enhancement of the electrocatalytic activity of air electrodes via chemical fluorination for solid oxide electrolysis cells. J Power Sources. 2025;642:236940. doi:10.1016/j.jpowsour.2025.236940

Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, Smirnov AS, Kolchugin AA, Porotnikova NM, Khodimchuk AV, Berenov AV, Kurumchin EKh. Oxygen isotope exchange in La2NiO4±δ. Phys Chem Chem Phys. 2016;18(13):9102–11. doi:10.1039/C5CP05984D

Song J, Ning D, Boukamp B, Bassat J M, Bouwmeester HJM. Structure, electrical conductivity and oxygen transport properties of Ruddlesden–Popper phases Lnn+1NinO3n+1 (Ln = La, Pr and Nd; n = 1, 2 and 3). J Mater Chem A. 2020;8(42):22206–21. doi:10.1039/D0TA06731H

Hou K, Lou C, Tang M, Cao H, Liu L, Xu J. Defect structure, oxygen ion conduction, and conducting mechanism in Ruddlesden–Popper Sr3Zr2–xMxO7–0.5x (M = Ga, Y, In). Inorg Chem. 2024;63(38):17727–39. doi:10.1021/acs.inorgchem.4c02571

Yatoo MA, Skinner SJ. Oxygen transport in higher-order Ruddlesden-Popper phase materials. ECS Trans. 2023;111(6):2405–12. doi:10.1149/11106.2405ecst

Sadykov VA, Eremeev NF, Shlyakhtina AV, Pikalova EYu. Advances in alternative metal oxide materials of various structures for electrochemical and catalytic applications. Int J Hydrogen Energy. 2024;94:179–208. doi:10.1016/j.ijhydene.2024.11.072

Klyndyuk AI, Chizhova EA, Kharytonau DS, Medvedev DA. Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells. Materials. 2022;15(1):141. doi:10.3390/ma15010141

Baratov S, Filonova E, Ivanova A, Hanif MB, Irshad M, Khan MZ, Motola M, Rauf S, Medvedev D. Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews. J Energy Chem. 2024;94:302–31. doi:10.1016/j.jechem.2024.02.047

Zhu Y, Zhou W, Chen Y, Shao Z. An Aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells. Angew Chem Int Ed. 2016;55(31):8988–93. doi:10.1002/anie.201604160

Yadav AK, Sinha S, Kumar A. Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review. Int J Hydrogen Energy. 2024;59:1080–93. doi:10.1016/j.ijhydene.2024.02.124

Malavasi L, Fisher CAJ, Saiful Islam M. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev. 2010;39(11):4370–87. doi:10.1039/B915141A

Balaguer M, Yoo C Y, Bouwmeester HJM, Serra JM. Bulk transport and oxygen surface exchange of the mixed ionic–electronic conductor Ce1−xTbxO2−δ (x = 0.1, 0.2, 0.5). J Mater Chem A. 2013;1(35):10234–42. doi:10.1039/C3TA11610G

Kolbanev IV, Shlyakhtina AV, Degtyarev EN, Konysheva EYu, Lyskov NV, Stolbov DN, Streletskii AN. Room-temperature mechanochemical synthesis of RE molybdates: Impact of structural similarity and basicity of oxides. J Am Ceram Soc. 2021;104(11):5698–710. doi:10.1111/jace.17939

Koroleva MS, Eremeev NF, Sadovskaya EM, Sadykov VA, Piir IV. Synthesis, optical properties, and oxide ionic transport features in Mn-Li-, Mn-Ru-, Mn-Ru-Li-codoped bismuth niobate pyrochlores. Ceram Int. 2025;51(8):9807–16. doi:10.1016/j.ceramint.2024.12.412

Bhosale DR, Patil SI. Conduction pathways and mixed ionic-electronic conductivity below 500 °C in CaxY3−xFe5O12−δ materials. Phys Rev Mater. 2019;3:095007. doi:10.1103/PhysRevMaterials.3.095007

Araújo AJM, Macedo DA, Graça VCD, Holz LIV, Fagg DP, Loureiro FJA. Progress in misfit Ca-cobaltite electrodes for solid oxide electrochemical cells. In: Handbook of Energy Materials. Springer; 2022. pp. 1-34. doi:10.1007/978-981-16-4480-1_71-1

Lu Y, Noor A, Ahmed J, Alwadie N, Akhtar MN, Abid S, Yousaf M, Mahmoud M, Aslam M. Synergistic effects and electrocatalytic insight of single-phase hexagonal structure as low-temperature solid oxide fuel cell cathode. J Rare Earths. 2024. [Cited 2025] doi:10.1016/j.jre.2024.06.027

Parkkima O, Karppinen M. The YBaCo4O7+δ-based functional oxide material family: A review. Eur J Inorg Chem. 2014;2014(25):4056–67. doi:10.1002/ejic.201402135

Pirovano C, Löfberg A, Bodet H, Bordes-Richard E, Steil MC, Vannier RN. BIMEVOX as dense membrane in catalytic reactor (ME = Co, Cu, Ta). Solid State Ionics. 2006;177(26–32):2241–44. doi:10.1016/j.ssi.2006.01.025

Rauf S, Hanif MB, Tayyab Z, Veis M, Yousaf Shah MAK, Mushtaq N, Medvedev DA, Tian Y, Xia C, Motola M, Zhu B. Alternative strategy for development of dielectric calcium copper titanate-based electrolytes for low-temperature solid oxide fuel cells. Nano-Micro Lett. 2025;17(1):13. doi:10.1007/s40820-024-01523-0

Liao T, Sasaki T, Sun Z. The oxygen migration in the apatite-type lanthanum silicate with the cation substitution. Phys Chem Chem Phys. 2013;15(40):17553–59. doi:10.1039/c3cp52245h

Pikalova EYu, Kolchugin AA, Sadykov VA, Sadovskaya EM, Filonova EA, Eremeev NF, Bogdanovich NM. Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium. Int J Hydrogen Energy. 2018;43(36):17373–86. doi:10.1016/j.ijhydene.2018.07.115

Sadykov VA, Sadovskaya EM, Uvarov NF. Methods of isotopic relaxations for estimation of oxygen diffusion coefficients in solid electrolytes and materials with mixed ionic-electronic conductivity. Russ J Electrochem. 2015;51(5):458–67. doi:10.1134/S1023193515050109

Sadykov V, Sadovskaya E, Bobin A, Kharlamova T, Uvarov N, Ulikhin A, Argirusis C, Sourkouni G, Stathopoulos V. Temperature-programmed C18O2 SSITKA for powders of fast oxide-ion conductors: Estimation of oxygen self-diffusion coefficients. Solid State Ionics. 2015;271:69–72. doi:10.1016/j.ssi.2014.11.004

Muzykantov VS, Popovski VV, Boreskov GK. Kinetika izotop-nogo obmena v sisteme molekulyarnyi kislorod – tvyodyi okisel [Kinetics of isotope exchange in molecular oxygen – solid oxide system]. Kinet Katal. 1964;5(4):624–9. Russian.

Muzykantov VS, Kemnitz E, Sadykov VA, Lunin VV. Interpretation of isotope exchange data “without time”: Nonisothermal exchange of dioxygen with oxides. Kinet Catal. 2003;44(3):319–22. doi:10.1023/A:1024486716938

Muzykantov VS. Studies of dioxygen activation on oxide catalysts for oxidation: Problems, results and perspectives. React Kinet Catal Lett. 1987;35(1–2):437–47. doi:10.1007/BF02062178

Andersen H, Haugsrud R. Effects of particle size on oxygen surface exchange kinetics determined by pulse isotope exchange. Appl Surf Sci. 2025;690:162601. doi:10.1016/j.apsusc.2025.162601

Khodimchuk AV, Zakharov DM, Gordeev EV, Porotnikova NM. 16O2 – 18O2 interface exchange study between gas phase and the BaFeO3–δ oxide. J Phys Chem Solids. 2025;196:112390. doi:10.1016/j.jpcs.2024.112390

Manon A, Nau A, Belin T, Mazurier A, Bassat JM, Bion N, Comminges C. Influence of electrode potential on oxygen mobility probed by polarized isotopic exchange in solid oxide electrolyser cells: Insights for electro‐assisted oxidation reactions. ChemCatChem. 2024;16(11):e202301616. doi:10.1002/cctc.202301616

Arapova M, Chizhik S, Bragina O, Guskov R, Sobolev V, Nemudry A. Consistent interpretation of isotope and chemical oxygen exchange relaxation kinetics in SrFe0.85Mo0.15O3−δ ferrite. Phys Chem Chem Phys. 2024;26(14):10589–98. doi:10.1039/D3CP05441A

Akhmadeev AR, Eremin VA, Ananyev MV, Voloshin BV, Popov MP, Ivanov IL, Fetisov AV. Oxygen stoichiometry and isotope exchange of oxides Ba0.5Sr0.5Co0.8Fe0.2O3−δ doped with Ta, Nb, Mo or W. Appl Surf Sci. 2023;629:157312. doi:10.1016/j.apsusc.2023.157312

Pikalova E, Sadykov V, Sadovskaya E, Yeremeev N, Kolchugin A, Shmakov A, Vinokurov Z, Mishchenko D, Filonova E, Belyaev D. Correlation between structural and transport properties of Ca-doped La nickelates and their electrochemical performance. Crystals. 2021;11(3):297. doi:10.3390/cryst11030297

Sadykov V, Shlyakhtina A, Sadovskaya E, Eremeev N, Skazka V, Goncharov V. 2D diffusion of oxygen in Ln10Mo2O21 (Ln = Nd, Ho) oxides. Solid State Ionics. 2020;346:115229. doi:10.1016/j.ssi.2020.115229

Sadykov V, Shlyakhtina A, Lyskov N, Sadovskaya E, Cherepanova S, Eremeev N, Skazka V, Goncharov V, Kharitonova E. Oxygen diffusion in Mg-doped Sm and Gd zirconates with pyrochlore structure. Ionics. 2020;26(9):4621–33. doi:10.1007/s11581-020-03614-5

Sadovskaya EM, Bobin AS, Skazka VV. Isotopic transient analysis of oxygen exchange over oxides. Chem Eng J. 2018;348:1025–36. doi:10.1016/j.cej.2018.05.027

Sadykov VA, Sadovskaya EM, Skazka VV, Eremeev NF, Skriabin PI, Krasnov AV, Bespalko YuN, Pavlova SN, Fedorova YuE, Pikalova EYu, Shlyakhtina AV. Isothermal and temperature-programmed isotope exchange of oxygen in a flow reactor for SOFC and catalytic membranes materials. In: ISOTOPCAT 2019 (International Symposium “Isotopic Studies in Catalysis and Electrocatalysis); 2019 Jul 03-06; Poitiers, France. pp. 25–6.

Grobovoy IS, Kolchugin AA, Pikalova EYu, Suntsov AYu. Defect formation and thermodynamic properties of Ca-doped La2NiO4 oxides. Inorg Chem Commun. 2025;179(2):114823. doi:10.1016/j.inoche.2025.114823

Sadykov VA, Pikalova EYu, Vinokurov ZS, Shmakov AN, Eremeev NF, Sadovskaya EM, Lyagaeva JG, Medvedev DA, Belyaev VD. Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy. Solid State Ionics. 2019;333:30–7.doi:10.1016/j.ssi.2019.01.014

Pikalova EYu, Sadykov VA, Filonova EA, Eremeev NF, Sadovskaya EM, Pikalov SM, Bogdanovich NM, Lyagaeva JG, Kolchugin AA, Vedmid’ LB, Ishchenko AV, Goncharov VB. Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4. Solid State Ionics. 2019;335:53–60. doi:10.1016/j.ssi.2019.02.012

Kol’chugin AA, Pikalova EYu, Bogdanovich NM, Bronin DI, Filonova EA. Electrochemical properties of doped lantanum–nickelate-based electrodes. Russ J Electrochem. 2017;53(8):826–33. doi:10.1134/S1023193517080110

Herlihy A, Chem W T, Ritter C, Chuang Y C, Senn MS. Interplay between Jahn−Teller distortions and structural phase transitions in Ruddlesden−Poppers. J Am Chem Soc. 2025;147(9):7209−13. doi:10.1021/jacs.5c00459

Huangfu S, Zhang X, Schilling A. Correlation between the tolerance factor and phase transition in A4–xBxNi3O10 (A and B = La, Pr, and Nd; x = 0, 1, 2, and 3). Phys Rev Res. 2020;2(3):033247. doi:10.1103/PhysRevResearch.2.033247

Gilev AR, Sukhanov AS, Kiselev EA, Sobol ME, Cherepanov VA. Increasing thermodynamic stability and electrochemical performance of IT-SOFC cathodes based on Ln2MO4 (Ln = La, Pr; M = Ni, Cu). Ceram Int. 2024;50:40453–63. doi:10.1016/j.ceramint.2024.04.176

Sharma ID, Singh D. Solid state chemistry of Ruddlesden-Popper type complex oxides. Bull Mater Sci. 1998;21(5):363–74. doi:10.1007/BF02744920

Poix P. Etude de la structure K2NiF4 par la méthode des invarians. I. Cas des oxydes A2BO4. [Study of the structure K2NiF4 by the method of the invariants, I. Oxides A2BO4] J Solid State Chem. 1980;31(1):95–102. French. doi:10.1016/0022-4596(80)90011-0

Chen B H. Introduction of a tolerance factor for the Nd2CuO4 (T’)-type structure. J Solid State Chem. 1996:125(1):63–6. doi:10.1006/jssc.1996.0265

Shin HG, Kim EH, Kim J, Kim H, Lee D. Ruddlesden-Popper tolerance factor: An indicator predicting stability of 2D Ruddlesden-Popper phases. Acta Mater. 2025;396:120999. doi:10.1016/j.actamat.2025.120999

Sadykov VA, Sadovskaya EM, Pikalova EYu, Kolchugin AA, Filonova EA, Pikalov SM, Eremeev NF, Ishchenko AV, Lukashevich AI, Bassat JM. Transport features in layered nickelates: Correlation between structure, oxygen diffusion, electrical and electrochemical properties. Ionics. 2018;24(4):1181–93. doi:10.1007/s11581-017-2279-3

Sadykov VA, Pikalova EYu, Kolchugin AA, Fetisov AV, Sadovskaya EM, Filonova EA, Eremeev NF, Goncharov VB, Krasnov AV, Skriabin PI, Shmakov AN, Vinokurov ZS, Ishchenko AV, Pikalov SM. Transport properties of Ca-doped Ln2NiO4 for intermediate temperature solid oxide fuel cells cathodes and catalytic membranes for hydrogen production. Int J Hydrogen Energy. 2020;45(25):13625–42. doi:10.1016/j.ijhydene.2018.03.039

Sadykov VA, Pikalova EYu, Kolchugin AA, Filonova EA, Sadovskaya EM, Eremeev NF, Ishchenko AV, Fetisov AV, Pikalov SM. Oxygen transport properties of Ca-doped Pr2NiO4. Solid State Ionics. 2018;317:234–43. doi:10.1016/j.ssi.2018.01.035

Mishchenko D, Vinokurov Z, Gerasimov E, Filonova E, Shmakov A, Pikalova E. Unusual lattice parameters behavior for La1.9Ca0.1NiO4+δ at the temperatures below oxygen loss. Crystals. 2022;12(3):344. doi:10.3390/cryst12030344

Kolchugin AA, Pikalova EYu, Bogdanovich NM, Bronin DI, Pikalov SM, Plaksin SV, Ananyev MV, Eremin VA. Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate. Solid State Ionics. 2016;288:48–53. doi:10.1016/j.ssi.2016.01.035

Aguadero A, Escudero MJ, Pérez M, Alonso JA, Pomjakushin V, Dazaad L. Effect of Sr content on the crystal structure and electrical properties of the system La2−xSrxNiO4+δ (0 ≤ x ≤ 1). Dalton Trans. 2006;36:4377–83. doi:10.1039/B606316K

Pikalov SM, Vedmid’ LB, Filonova EA, Pikalova EYu, Lyagaeva JG, Danilov NA, Murashkina AA. High-temperature behavior of calcium substituted layered neodymium nickelates. J Alloys Compd. 2019;801:558–67. doi:10.1016/j.jallcom.2019.05.349

Pikalova EYu, Bogdanovich NM, Kolchugin AA, Ananyev MV, Pankratov AA. Influence of the synthesis method on the electrochemical properties of bilayer electrodes based on La2NiO4+δ and LaNi0.6Fe0.4O3−δ. Solid State Ionics. 2016;288:36–42. doi:10.1016/j.ssi.2016.01.014

Pikalova EYu, Medvedev DA, Khasanov AF. Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4+δ. Phys Solid State. 2017;59(4):694–702. doi:10.1134/S1063783417040187

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystal A. 1976;32(5):751–67. doi:10.1107/S0567739476001551

Sadykov V, Pikalova E, Eremeev N, Shubin A, Zilberberg I, Prosvirin I, Sadovskaya E, Bukhtiyarov A. Oxygen transport in Pr nickelates: Elucidation of atomic-scale features. Solid State Ionics. 2020;344:115155. doi:10.1016/j.ssi.2019.115155

Takeda Y, Nishijima M, Imanishi N, Kanno R, Yamomoto O. Crystal chemistry and transport properties of Nd2−xAxNiO4 (A = Ca, Sr, or Ba, 0 < x < 1.4). J Solid State Chem. 1992;96(1):72–83. doi:10.1016/S0022-4596(05)80299-3

Ormerod RM. Solid oxide fuel cells. Chem Soc Rev. 2003;32(1):17–28. doi:10.1039/B105764M

Pikalova EYu, Bogdanovich NM, Kolchugin AA, Brouzgou A, Bronin DI, Plaksin SV, Khasanov AF, Tsiakaras P. Effect of nature of the ceramic component of the composite electrodes based on La1.7Ca(Sr)0.3NiO4+δ on their electrochemical performance. ECS Trans. 2015;68(1):809–15. doi:10.1149/06801.0809ecst

Pikalova EYu, Kolchugin AA. The influence of the substituting element (M = Ca, Sr, Ba) in La1.7M0.3NiO4+δ on the electrochemical performance of the composite electrodes. Eurasian Chem-Technol J. 2016;18(1):3–11. doi:10.18321/ectj386

Kalinina E, Pikalova E, Kolchugin A, Pikalova N, Farlenkov A. Comparative Study of electrophoretic deposition of doped BaCeO3-based films on La2NiO4+δ and La1.7Ba0.3NiO4+δ cathode substrates. Materials. 2019;12(16):2545. doi:10.3390/ma12162545

Sadykov VA, Sadovskaya EM, Eremeev NF, Maksimchuk TYu, Pikalov SM, Filonova EA, Pikalova NS, Gilev AR, Pikalova EYu. Structure, oxygen mobility, and electrochemical characteristics of La1.7Ca0.3Ni1−xCuxO4+δ materials. Russ J Electrochem. 2023;59(1):37–48. doi:10.1134/S1023193523010068

Filonova E, Gilev A, Maksimchuk T, Pikalova N, Zakharchuk K, Pikalov S, Yaremchenko A, Pikalova E. Development of La1.7Ca0.3Ni1−yCuyO4+δ materials for oxygen permeation membranes and cathodes for intermediate-temperature solid oxide fuel cells. Membranes. 2022;12(12):1222. doi:10.3390/membranes12121222

Nakamura T, Oike R, Ling Y, Tamenori Y, Amezawa K. Determining factor for the interstitial oxygen formation in Ruddlesden–Popper type La2NiO4-based oxides. Phys Chem Chem Phys. 2015;18(3):1564–9. doi:10.1039/C5CP05993C

Aguadero A, Alonso J, Escudero M, Daza L. Evaluation of the La2Ni1−xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ionics. 2008;179(11–12):393–400. doi:10.1016/j.ssi.2008.01.099

Sakai M, Wang C, Okiba T, Soga H, Niwa E, Hashimoto T. Thermal analysis of structural phase transition behavior of Ln2Ni1−xCuxO4+δ (Ln = Nd, Pr) under various oxygen partial pressures. J Therm Anal Calorim. 2019;135(5):2765–74. doi:10.1007/s10973-018-7621-0

Sadykov V, Eremeev N, Sadovskaya E, Zhulanova T, Pikalov S, Fedorova Yu, Pikalova E. Impact of calcium and copper co-doping on the oxygen transport of layered nickelates: A case study of Pr1.6Ca0.4Ni1−yCuyO4+δ and a comparative analysis. Chim Tech Acta. 2024;11(4):202411411. doi:10.15826/chimtech.2024.11.4.11

Pikalova E, Zhulanova T, Ivanova A, Tarutin A, Fetisov A, Filonova E. Optimized Pr1.6Ca0.4Ni1−yCuyO4+δ phases as promising electrode materials for CeO2- and BaCe(Zr)O3-based electrochemical cells. Ceram Int. 2024;50(20C):40476–91. doi:10.1016/j.ceramint.2024.06.048

Zhulanova T, Filonova E, Ivanova A, Russkikh O, Pikalova E. Control physicochemical and electrochemical properties of Pr1.6Cа0.4Ni0.6Cu0.4O4+δ as a prospective cathode material for solid oxide cells through the synthesis process. Solid State Sci. 2024;156:107671. doi:10.1016/j.solidstatesciences.2024.107671

Maksimchuk T, Filonova E, Mishchenko D, Eremeev N, Sadovskaya E, Bobrikov I, Fetisov A, Pikalova N, Kolchugin A, Shmakov A, Sadykov V, Pikalova E. High-temperature behavior, oxygen transport properties, and electrochemical performance of Cu-substituted Nd1.6Ca0.4NiO4+δ electrode materials. Appl Sci. 2022;12(8):3747. doi:10.3390/app12083747

Filonova EA, Pikalova EYu, Maksimchuk TYu, Vylkov AI, Pikalov SM, Maignan A. Crystal structure and functional properties of Nd1.6Ca0.4Ni1−yCuyO4+δ as prospective cathode materials for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energy. 2021;46(32):17037–50. doi:10.1016/j.ijhydene.2020.10.243

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44(6):1272–6. doi:10.1107/S0021889811038970

Tarutin AP, Lyagaeva JG, Medvedev DA, Bi L, Yaremchenko AA. Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J Mater Chem A. 2021;9(1):154–95. doi:10.1039/D0TA08132A

Pikalova E, Kolchugin A, Tsvinkinberg V, Sereda V, Khrustov A, Filonova E. Comprehensive study of functional properties and electrochemical performance of layered lanthanum nickelate substituted with rare-earth elements. J Power Sources. 2023;581:233505. doi:10.1016/j.jpowsour.2023.233505

Pikalova E, Kolchugin A, Zakharchuk K, Boiba D, Tsvinkinberg V, Filonova E, Khrustov A, Yaremchenko A. Mixed ionic-electronic conductivity, phase stability and electrochemical activity of Gd-substituted La2NiO4+δ as oxygen electrode material for solid oxide fuel/electrolysis cells. Int J Hydrogen Energy. 2021;46(32):16932–46. doi:10.1016/j.ijhydene.2021.03.007

Pikalova E, Eremeev N, Sadovskaya E, Sadykov V, Tsvinkinberg V, Pikalova N, Kolchugin A, Vylkov A, Baynov I, Filonova E. Influence of the substitution with rare earth elements on the properties of layered lanthanum nickelate – Part 1: Structure, oxygen transport and electrochemistry evaluation. Solid State Ionics. 2022;379:115903. doi:10.1016/j.ssi.2022.115903

Pikalova E, Sadykov V, Tsvinkinberg V, Kolchugin A, Zhulanova T, Guseva E, Eremeev N, Sadovskaya E, Belyaev V, Filonova E. Boosting the oxygen transport kinetics and functional properties of La2NiO4+δ via partial La-to-Sm substitution. J Alloys Compd. 2024;980:173648. doi:10.1016/j.jallcom.2024.173648

Sadykov VA, Sadovskaya EM, Filonova EA, Eremeev NF, Belyaev VD, Tsvinkinberg VA, Pikalova EYu. Oxide ionic transport features in Gd-doped La nickelates. Solid State Ionics. 2020;357:115462. doi:10.1016/j.ssi.2020.115462

Tsvinkinberg VA, Tolkacheva AS, Filonova EA, Gyrdasova OI, Pikalov SM, Vorotnikov VA, Vylkov AI, Moskalenko NI, Pikalova EYu. Structure, thermal expansion and electrical conductivity of La2–xGdxNiO4+δ (0.0 ≤ x ≤ 0.6) cathode materials for SOFC applications. J Alloys Compd. 2021;853:156728. doi:10.1016/j.jallcom.2020.156728

Sadykov VA, Sadovskaya EM, Bespalko YuN, Smal’ EA, Eremeev NF, Prosvirin IP, Bulavchenko OA, Mikhailenko MA, Korobeynikov MV. Structural, Surface and oxygen transport properties of Sm-doped Nd nickelates. Solid State Ionics. 2024;412:116596. doi:10.1016/j.ssi.2024.116596

Sadykov VA, Sadovskaya EM, Bespalko YuN, Smal’ EA, Bulavchenko ON, Eremeev NF, Prosvirin IP, Mikhailenko MA, Korobeynikov MV. Oxygen mobility of samarium doped neodymium nickelates sintered by e-beams. Russ J Electrochem. 2025;61(2):28–39. doi:10.1134/S1023193524601670

Mishchenko DD, Arapova MV, Bespalko YuN, Vinokurov ZS, Shmakov AN. In situ XRD and TGA/DTA study of multiphase La- and Nd-substituted Pr2NiO4 under IT-SOFC cathode operating conditions. J Alloys Compd. 2023;967:171693. doi:10.1016/j.jallcom.2023.171693

Nishimoto S, Takahashi S, Kameshima Y, Matsuda M, Miyake M. Properties of La2−xPrxNiO4 cathode for intermediate-temperature solid oxide fuel cells. J Ceram Soc. 2011;119(1387):246–50. doi:10.2109/jcersj2.119.246

Sharma RK, Khamidy NI, Bassat JM, Djurado E. La2−xPrxNiO4+δ-based efficient SOFC cathodes: Effect of microstructure, composition and architecture. ECS Trans. 2017;78(1):581–91. doi:10.1149/07801.0581ecst

Nikonov AV, Kuterbekov KA, Bekmyrza KZh, Pavzderin NB. A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian J Phys Funct Mater. 2018;2(3):9. doi:10.29317/ejpfm.2018020309

Amow G, Skinner SJ. Recent developments in Ruddlesden–Popper nickelate systems for solid oxide fuel cell cathodes. J Solid State Electrochem. 2006;10(8):538–46. doi:10.1007/s10008-006-0127-x

Garali M, Kahlaoui M, Mohammed B, Mater A, ben Azouz C, Chefi C. Synthesis, characterization and electrochemical properties of La2−xEuxNiO4+δ Ruddlesden-Popper-type layered nickelates as cathode materials for SOFC applications. Int J Hydrogen Energy. 2019;44(21):11020–32. doi:10.1016/j.ijhydene.2019.02.158

Vegard L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Physik. 1921;5(1):17–21. doi:10.1007/BF01349680

Vibhu V, Suchomel MR, Penin N, Weill F, Grenier J C, Bassat J M, Rougier A. Structural transformations of the La2−xPrxNiO4+δ system probed by high-resolution synchrotron and neutron powder diffraction. Dalton Trans. 2019;48(1):266–77. doi:10.1039/C8DT03524E

Ishikawa H, Toyosumi Y, Ishikawa K. Structural phase transition of La2−xNdxNiO4+δ (0.0 ≤ x ≤ 2.0). J Alloys Compd. 2006;408–412:1196–9. doi:10.1016/j.jallcom.2004.12.143

Guseva EM, Ivanov RA, Pikalova EYu, Filonova EA. Modeling of crystal structure parameters in complex-oxide perovskite-like systems. In: Materials of the XIX Russian Conference “Physical Chemistry and Electrochemistry of molten and solid electrolytes”; 2023 Sep 17-21; Ekaterinburg, Russia. p. 188.

Tietz F, Arul Raj I, Zahid M, Stöver D. Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn,Fe,Co)O3−δ. Solid State Ionics. 2006;177(19–25):1753–6. doi:10.1016/j.ssi.2005.12.017

Tietz F. Thermal expansion of SOFC materials. Ionics. 1999;5(1–2):129–39. doi:10.1007/bf02375916

Huang K, Feng M, Goodenough GB, Schmerling M. Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell. J Electrochem Soc. 1996;143(11):3630–6. doi:10.1149/1.1837262

Kagomiya I, Kimura K, Mizuno K. Synthesis and thermal/oxygen permeation characteristics of La0.1Sr0.9Co0.9Fe0.1O3−δ compounds with La-doped ceria as ideal dual-phase composites. Ceram Int. 2025;51(11):14716–22. doi:10.1016/j.ceramint.2025.01.312

Lein HL, Wiik K, Grande T. Thermal and chemical expansion of mixed conducting La0.5Sr0.5Fe1−xCoxO3−δ materials. Solid State Ionics. 2006;177(19–25):1795–8. doi:10.1016/j.ssi.2006.02.033

Corbel G, Mestiri S, Lacorre P. Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor. Solid State Sci. 2005;7(10):1216–24. doi:j.solidstatesciences.2005.05.007

Løken A, Ricote S, Wachowski S. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals. 2018;8(9):365. doi:10.3390/cryst8090365

Radovic M, Lara-Curzio E, Trejo RM, Wang Hm Porter WD. Thermophysical properties of YSZ and Ni-YSZ as a function of temperature and porosity. In: Advances in Solid Oxide Fuel Cells II: Ceramic Engineering and Science Proceedings, Volume 27. Hoboken, NJ: John Wiley & Sons; 2006. pp. 79–85. doi:10.1002/9780470291337.ch8

Hayashi H, Saitou T, Maruyama N, Inaba H, Kawamura K, Mori M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ionics. 2005;176(5–6):613–9. doi:10.1016/j.ssi.2004.08.021

Ochrombel R, Schneider J, Hildmann B, Saruhan B. Thermal expansion of EB-PVD yttria stabilized zirconia. J Eur Ceram Soc. 2010;30(12):2491–6. doi:10.1016/j.jeurceramsoc.2010.05.008

Dayaghi AM, Haugsrud R, Stange M, Larring Y, Strandbakke R, Norby T. Increasing the thermal expansion of proton conducting Y-doped BaZrO3 by Sr and Ce substitution. Solid State Ionics. 2021;359:115534. doi:10.1016/j.ssi.2020.115534

Quarez E, Kravchyk KV, Joubert O. Compatibility of proton conducting La6WO12 electrolyte with standard cathode materials. Solid State Ionics. 2012;216:19–24. doi:10.1016/j.ssi.2011.11.003

Kojo G, Tsukimura R, Otomo J. Structural and transport properties of lanthanum tungstate with high La/W ratio: Suitability for proton-conducting solid oxide fuel cells operating at intermediate temperature. Solid State Ionics. 2017;306:89–96. doi:10.1016/j.ssi.2017.04.009

Kuterbekov KA, Bekmyrza KZ, Kabyshev AM, Kubenova MM, Aidarbekov NK, Nurkenov SA. Investigation of the characteristics of materials with the Ruddlesden-Popper structure for solid oxide fuel cells. Bull Karaganda University Phys Ser. 2022;108(4):32–47. doi:10.31489/2022ph4/32-47

Cheng J, Zhang S, Meng B, Ding J, Tan X. Preparation and the superior oxygen permeability of a new CO2-resistant Ruddlesden–Popper composite oxide Pr2Ni0.9Mo0.1O4+δ. J Alloys Compd. 2018;742:966–76. doi:10.1016/j.jallcom.2018.01.366

Zakharchuk K, Kovalevsky A, Yaremchenko A. Characterization of Ruddlesden-Popper La2−xBaxNiO4±δ nickelates as potential electrocatalysts for solid oxide cells. Materials. 2023;16(4):1755. doi:10.3390/ma16041755

Inprasit T, Limthongkul P, Wongkasemjit S. Sol–gel and solid-state synthesis and property study of La2−xSrxNiO4 (x ≤ 0.8). J Electrochem Soc. 2010;157:B1726. doi:10.1149/1.3489262

Nie HW, Wen TL, Wang SR, Wang YS, Guth U, Vashook V. Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αA′αMO4 (A = Pr, Sm; A′ = Sr; M= Mn, Ni; α = 0.3, 0.6) as a new cathode for SOFC. Solid State Ionics. 2006;177(19–25):1929–32. doi:10.1016/j.ssi.2006.01.003

Kumar U, Upadhyay S. Structural, optical and electrical properties of Ruddlesden Popper oxide Ba2SnO4. J Electron Mater. 2019;48(8):5279–93. doi:10.1007/s11664-019-07336-x

Xu S, Jacobs R, Morgan D. Factors controlling oxygen interstitial diffusion in the Ruddlesden–Popper oxide La2−xSrxNiO4+δ. Chem Mater. 2018;30(20):7166–77. doi:10.1021/acs.chemmater.8b03146

Lee D, Lee HN. Controlling oxygen mobility in Ruddlesden–Popper oxides. Materials. 2017;10(4):368. doi:10.3390/ma10040368

Tealdi C, Ferrara C, Mustarelli P, Saiful Islam M. Vacancy and interstitial oxide ion migration in heavily doped La2−xSrxCoO4±δ. J Mater Chem. 2012;22(18):8969–75. doi:10.1039/C2JM30769C

Forslund RP, Hardin WG, Rong X, Abakumov AM, Filimonov D, Alexander CT, Tyler Mefford J, Iyer H, Kolpak AM, Johnston KP, Stevenson KJ. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexO4±δ Ruddlesden-Popper oxides. Nat Commun. 2018;9:3150. doi:10.1038/s41467-018-05600-y

Meyer TL, Jacobs R, Lee D, Jiang L, Freeland JW, Sohn C, Egami T, Morgan D, Lee HN. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La1.85Sr0.15CuO4. Nat Commun. 2018;9:92. doi:10.1038/s41467-017-02568-z

Kang K, Liu X, Wang C, Yang L, Liu Y. The regulation mechanism of oxygen vacancies in Ruddlesden–Popper perovskite Ln2NiO4 (Ln = La, Pr, Nd) air electrode for reversible protonic solid oxide cells. Small. 2025;2502478. doi:10.1002/smll.202502478

Pikalova E, Kolchugin A, Bogdanovich N, Medvedev D, Lyagaeva J, Vedmid’ L, Ananyev M, Plaksin S, Farlenkov A. Suitability of Pr2−xCaxNiO4+δ as cathode materials for electrochemical devices based on oxygen ion and proton conducting solid state electrolytes. Int J Hydrogen Energy. 2020;45(25):13612–24. doi:10.1016/j.ijhydene.2018.06.023

Skinner SJ, Kilner JA. Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics. 2000;135(1–4):709–12. doi:10.1016/S0167-2738(00)00388-X

Tropin E, Ananyev M, Porotnikova N, Khodimchuk A, Saher S, Farlenkov A, Kurumchin E, Shepel D, Antipov E, Istomin S, Bouwmeester H. Oxygen surface exchange and diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±δ. Phys Chem Chem Phys. 2019;21(9):4779–90. doi:10.1039/C9CP00172G

Istomin SYa, Karakulina OM, Rozova MG, Kazakov SM, Gippius AA, Antipov EV, Bobrikov IA, Balagurov AM, Tsirlin AA, Michau A, Biendicho JJ, Svensson G. Tuning the high-temperature properties of Pr2NiO4+δ by simultaneous Pr- and Ni-cation replacement. RSC Adv. 2016;6(40):33951–8. doi:10.1039/C6RA03099H

Sadykov VA, Pavlova SN, Kharlamova TS, Muzykantov VS, Uvarov NF, Okhlupin YuS, Ishchenko AV, Bobin AS, Mezentseva NV, Alikina GM, Lukashevich AI, Krieger TA, Larina TV, Bulgakov NN, Tapilin VM, Belyaev VD, Sadovskaya EM, Boronin AI, Sobyanin VA, Bobrenok OF, Smirnova AL, Smorygo OL, Kilner JA. Perovskites and their nanocomposites with fluorite-like oxides as materials for solid oxide fuel cells cathodes and oxygen-conducting membranes: Mobility and reactivity of the surface/bulk oxygen as a key factor of their performance. In: Perovskites: Structure, Properties and Uses. Nova Science Publishers; 2010. pp. 67–168.

Sadykov VA, Sadovskaya EM, Eremeev NF, Bobin AS, Fedorova YuE, Muzykantov VS, Mezentseva NV, Alikina GM, Krieger TA, Belyaev VD, Rogov VA, Ulikhin AS, Okhlupin YuS, Uvarov NF, Bobrenok OF, McDonald N, Watton J, Dhir A, Steinberger-Wilckens R, Mertens J, Vinke IC. Cathodic materials for intermediate-temperature solid oxide fuel cells based on praseodymium nickelates-cobaltites. Russ J Electrochem. 2014;50(7):669–79. doi:10.1134/S1023193514070131

Sadykov V, Eremeev N, Alikina G, Sadovskaya E, Muzykantov V, Pelipenko V, Bobin A, Krieger T, Belyaev V, Ivanov V, Ishchenko A, Rogov V, Ulikhin A, Uvarov N, Okhlupin Yu, Mertens J, Vinke I. Oxygen mobility and surface reactivity of PrNi1−xCoxO3+δ–Ce0.9Y0.1O2−δ cathode nanocomposites. Solid State Ionics. 2014;262:707–12. doi:10.1016/j.ssi.2014.01.020

Sadykov VA, Eremeev NF, Vostrikov ZS, Shmakov AN, Kriventsov VV, Lukashevich AI, Krasnov AV, Ishchenko AV. Structural studies of Pr nickelate-cobaltite – Y-doped ceria nanocomposite. J Ceram Sci Technol. 2017;8(1):129–40. doi:10.4416/JCST2016-00099

Sadykov V, Mezentseva N, Arapova M, Krieger T, Gerasimov E, Alikina G, Pelipenko V, Bobin A, Muzykantov V, Fedorova Yu, Sadovskaya E, Eremeev N, Belyaev V, Okhlupin Yu, Uvarov N. Fast oxygen transport in bismuth oxide containing nanocomposites. Solid State Ionics. 2013;251:34–9. doi:10.1016/j.ssi.2013.03.016

Burriel M, Peña-Martínez J, Chater RJ, Fearn S, Berenov AV, Skinner SJ, Kilner JA. Anisotropic oxygen ion diffusion in layered PrBaCo2O5+δ. Chem Mater. 2012;24(3):613–21. doi:10.1021/cm203502s

Kim G, Wang S, Jacobson JA, Reimus L, Brodersen P, Mims CA. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J Mater Chem. 2007;17(24):2500–5. doi:10.1039/B618345J

Bespalko Yu, Eremeev N, Sadovskaya E, Krieger T, Bulavchenko O, Suprun E, Mikhailenko M, Korobeynikov M, Sadykov V. Synthesis and oxygen mobility of bismuth cerates and titanates with pyrochlore structure. Membranes. 2023;13(6):598. doi:10.3390/membranes13060598

Porotnikova N, Khrustov A, Farlenkov A, Khodimchuk A, Partin G, Animitsa I, Kochetova N, Pavlov D, Ananyev M. Promising La2Mo2O9–La2Mo3O12 composite oxygen-ionic electrolytes: Interphase phenomena. ACS Appl Mater Interfaces. 2022;14(4):6180–93. doi:10.1021/acsami.1c20839

Thoréton V, Hu Y, Pirovano C, Capoen E, Nuns N, Mamede AS, Dezanneau G, Yoo CY, Bouwmeester HJM, Vannier RN. Oxygen transport kinetics of the misfit layered oxide Ca3Co4O9+δ. J Mater Chem A. 2014; 2(46):19717–25. doi:10.1039/C4TA02198C

Hu Y, Thoréton V, Pirovano C, Capoen E, Bogicevic C, Nuns N, Mamede A S, Dezanneau G, Vannier RN. Oxide diffusion in innovative SOFC cathode materials. Faraday Discuss. 2014;176:31–47. doi:10.1039/C4FD00129J

Murch GE. The Nernst-Einstein equation in high-defect content solids. Philos Mag A. 1982;45(4):685–92. doi:10.1080/01418618208236198

Takamura H, Kobayashi J, Takahashi N, Okada M. Electrical conductivity of ceria nanoparticles under high pressure. J Electroceram. 2009;22(1–3):24–32. doi:10.1007/s10832-008-9432-3

Qi X, Lin YS, Holt CT, Swartz SL. Electric conductivity and oxygen permeability of modified cerium oxides. J Mater Sci. 2003;38(5):1073–9. doi:10.1023/A:1022310200205

Flura A, Nicollet C, Vibhu V, Zeimetz B, Rougier A, Bassat J M, Grenier J C. Application of the Adler-Lane-Steele model to porous La2NiO4+δ SOFC cathode: Influence of interfaces with gadolinia doped ceria. J Electroch Soc. 2016;163(6):F523–32. doi:10.1149/2.0891606jes

Hildenbrand N, Nammensma P, Blank DH, Bouwmeester HJ, Boukamp BA. Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells cathodes. Journal Power Sources. 2013;238:442–53. doi:10.1016/j.jpowsour.2013.03.192

Yakal-Kremski K, Mogni LV, Montenegro-Hernández A, Caneiro A, Barnett SA. Determination of electrode oxygen transport kinetics using electrochemical impedance spectroscopy combined with three-dimensional microstructure measurement: application to Nd2NiO4+δ. J Electrochem Soc. 2014;161(14):F1366–74. doi:10.1149/2.0521414jes

Chowdhury NR, Kant R. Theory of generalized Gerischer impedance for quasi-reversible charge transfer at rough and finite fractal electrodes. Electrochim Acta. 2018;281:445-58. doi:10.1016/j.electacta.2018.05.140

Boukamp BA, Bouwmeester HJ. Interpretation of the Gerischer impedance in solid state ionics. Solid State Ionics. 2003;157(1–4):29–33. doi:10.1016/S0167-2738(02)00185-6

Zhao C, Zhou Q, Zhang T, Qu L, Yang X, Wei T. Preparation and electrochemical properties of La1.5Pr0.5NiO4 and La1.5Pr0.5Ni0.9Cu0.1O4 cathode materials for intermediate-temperature solid oxide fuel cells. Mater Res Bull. 2019;113:25–30. doi:10.1016/j.materresbull.2019.01.016

Pikalova EYu, Bogdanovich NM, Kolchugin AA, Osinkin DA, Bronin DI. Electrical and electrochemical properties of La2NiO4+δ-based cathodes in contact with Ce0.8Sm0.2O2−δ electrolyte. Procedia Eng. 2014;98:105–10. doi:10.1016/j.proeng.2014.12.495

Sadykov V, Eremeev N, Sadovskaya E, Bobin A, Ishchenko A, Pelipenko V, Fedorova Yu, Lukashevich A, Salanov A, Krieger T, Belyaev V, Rogov V, Muzykantov V, Vinokurov Z, Shmakov A, Bobrenok O, Uvarov N, Ohlupin Yu, Ulikhin A, Mertens J, Vinke IC, Steinberger-Wilckens R, Watton J, Dhir A, McDonalds N. IT SOFC cathodes based on Pr nickelates/cobaltites: design and performance. In: Proceedings of the 11th European SOFC and SOE Forum; 2014 July1–4; Lucerne, Switzerland; pp. 20–8.

Wei Y, Yang W, Caro J, Wang H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chem Eng J. 2013;220:185–203. doi:10.1016/j.cej.2013.01.048

Gilev AR, Kiselev EA, Cherepanov VA. Homogeneity range, oxygen non-stoichiometry, thermal expansion and transport properties of La2−xSrxNi1−yFeyO4+δ. RCS Adv. 2016;6(77):72905–17. doi:10.1039/C6RA13335E

Xue J, Liao Q, Chen W, Bouwmeester HJM, Wang H, Feldhoff A. A new CO2-resistant Ruddlesden–Popper oxide with superior oxygen transport: A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ. J Mater Chem A. 2015; 3(37):19107–14. doi:10.1039/C5TA02514A

Yashima M, Sirikanda N, Ishihara T. Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ. J Am Chem Soc. 2010;132(7):2385–92. doi:10.1021/ja909820h

Chen G, Widenmeyer M, Tang B, Kaeswurm L, Wang L, Feldhoff A, Weidenkaff A. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Fron Chem Sci Eng. 2020;14(3):405–14. doi:10.1007/s11705-019-1886-0

Tang J, Wei Y, Zhou L, Li Z, Wang H. Oxygen permeation through a CO2‐tolerant mixed conducting oxide (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ. AIChE J. 2012;58(8):2473–8. doi:10.1002/aic.12742

Gędziorowski B, Cichy K, Niemczyk A, Olszewska A, Zhang Z, Kopeć S, Zheng K, Marzec M, Gajewska M, Du Z, Zhao H. Ruddlesden-Popper-type Nd2−xNi1−yCuyO4±δ layered oxides as candidate materials for MIEC-type ceramic membranes. J Eur Ceram Soc. 2020;40(12):4056–66. doi:10.1016/j.jeurceramsoc.2020.04.054

Zakharchuk K, Bamburov A, Naumovich EN, Vieira MA, Yaremchenko AA. Impact of silica additions on the phase composition and electrical transport properties of Ruddlesden–Popper La2NiO4+δ mixed conducting ceramics. Processes. 2022;10(1):82. doi:10.3390/pr10010082

Kusaba H, Shibata Y, Sasaki K, Teraoka Y. Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide. Solid State Ionics. 2006;177(26–32):2249–53. doi:10.1016/j.ssi.2006.05.038

Teraoka Y, Honbe Y, Ishii J, Furukawa H, Moriguchi I. Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes. Solid State Ionics. 2002;152–3:681–7. doi:10.1016/S0167-2738(02)00409-5

Kovalevsky AV, Yaremchenko AA, Kolotygin VA, Shaula AL, Kharton VV, Snijkers FMM, Buekenhoudt A, Frade JR, Naumovich EN. Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci. 2011;380(1–2):68–80. doi:10.1016/j.memsci.2011.06.034

Zhu X, Yang W, Kharton VV. Mixed Conducting Ceramic Membranes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017. 367 p. doi:10.1007/978-3-662-53534-9

doi:10.1016/S0009-2509(99)00015-9

doi:10.1016/S0167-2738(03)00027-4

doi:10.1016/j.solidstatesciences.2005.08.005

doi:10.1016/j.jssc.2018.03.020

doi:10.1016/j.ssi.2009.01.005

doi:10.1016/j.ceramint.2024.05.179

doi:10.1016/j.ijhydene.2022.11.175

doi:10.1016/j.ceramint.2020.06.217

doi:10.1016/j.cplett.2025.142219

doi:10.1016/j.jallcom.2025.179046

doi:10.2109/jcersj2.19028

doi:10.1016/j.ssi.2021.115594

doi:10.1179/1743676114Y.0000000203

doi:10.1016/j.jpowsour.2020.228909

doi:10.1016/j.apcatb.2024.124522

doi:10.1016/j.fuel.2025.135812

doi:10.1021/acs.inorgchem.8b00661

doi:10.1021/acs.inorgchem.4c00399

doi:10.1002/fuce.202300037

doi:10.1007/s10854-019-02604-2

doi:10.1016/j.jallcom.2024.174369

doi:10.1021/acssuschemeng.1c03538

doi:10.1016/j.ceramint.2024.03.112

doi:10.1016/j.ijhydene.2025.04.356

doi:10.1002/aesr.202300084

doi:10.1134/S1063783421050218

doi:10.1016/j.ijhydene.2013.06.073

doi:10.1016/j.cjche.2022.08.023

doi:10.1016/j.materresbull.2020.110986

doi:10.1016/j.jpowsour.2022.232220

doi:10.1016/j.fuel.2024.133430




DOI: https://doi.org/10.15826/chimtech.2025.12.3.04

Copyright (c) 2025 Vladislav Sadykov, Ekaterina Sadovskaya, Nikita Eremeev, Alexander Kolchugin, Elena Filonova, Viktor Tsvinkinberg, Tatyana Zhulanova, Elena Pikalova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice