
Mechanosynthesis of equol-based polycarbonate and polyester as chemosensors for detection of nitro-explosives
Abstract
Keywords
Full Text:
PDFReferences
Gratz S, Borchardt L. Mechanochemical polymerization – controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill. RSC Adv. 2016;6:64799. doi:10.1039/c6ra15677k
Nirmani LPT, Pary FF, Nelson TL. Mechanochemical Suzuki polymerization for the synthesis of polyfluorenes. Green Chem Lett Rev. 2022;15(4):863–868. doi:10.1080/17518253.2022.2107406
Fantozzi N, Volle J-N, Porcheddu A, Virieux D, Garcı F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev. 2023;52:6680-6714. doi:10.1039/D2CS00997H
Das A, Ringu T, Ghosh S, Pramanik N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull. 2023;80:7247–7312. doi:10.1007/s00289-022-04443-4
Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers. 2021;13(16):2729. doi:10.3390/polym13162729
Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers. 2022;14(5):983. doi:10.3390/polym14050983
Bhatia SK. Microbial Biopolymers: Trends in Synthesis, Modification, and Applications. Polymers. 2023;1(6):1364. doi:10.3390/polym15061364
Puri V, Sharma A, Kumar P, Singh I. Thiolation of Biopolymers for Developing Drug Delivery Systems with Enhanced Mechanical and Mucoadhesive Properties: A Review. Polymers. 2020;12(8):1803. doi:10.3390/polym12081803
Ilang AK, Liang Y. Surface modifications of biopolymers for removal of per- and polyfluoroalkyl substances from water: Current research and perspectives. Water Res. 2024;249:120927. doi:10.1016/j.watres.2023.120927
Muir VG, Burdick JA. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem Rev. 2021;121(18):10908–10949. doi:10.1021/acs.chemrev.0c00923
Abou-Alfitooh SAM, El-Hoshoudy AN. Eco-friendly Modified Biopolymers for Enhancing Oil Production: A Review. J Polym Environ. 2024;32:2457–2483. doi:10.1007/s10924-023-03132-1
Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients. 2019;11(9):2231. doi:10.3390/nu11092231
Gong Y,Lv J, Pang X, Zhang S,Zhang G, Liu L,Wang Y, Li C. Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods. 2023;12(12):2334. doi:10.3390/foods12122334
Fujitani T, Fujii Y, Lyu Z, Sassa MH, Harada KH. Urinary equol levels are positively associated with urinary estradiol excretion in women. Sci Rep. 2021;11:19532. doi:10.1038/s41598-021-98872-2
Fatima A, Khan MS, Ahmad MW. Therapeutic potential of equol: A comprehensive review. Curr Pharm Des. 2020;26:5837–5843. doi:10.2174/1381612826999201117122915
Setchell KD, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol - a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132:3577–3584. doi:10.1093/jn/132.12.3577
Joy MN, Kovalev IS, Shabunina OV, Santra S, Zyryanov GV. Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants. Antioxidants. 2024;13(10):1198. doi:10.3390/antiox13101198
Al-Ithawi WAK, Al-Sammarraie ESA, Baklykov AV, Platonov VA, Altobee AMK., Glebov NS, Khasanov AF, Kovalev IS, Nikonov IL, Kopchuk DS, Zyryanov GV. Mechanosynthesis of pentiptycene-based polyesters and polycarbonates. Chimica Techno Acta. 2024; 11(3):202411306. doi:10.15826/chimtech.2024.11.3.06
García F, Gómez R, Sánchez L. Chiral supramolecular polymers. Chem Soc Rev. 2023;52:7524. doi:10.1039/D3CS00470H
Liu D, Zhao J, Zhao X, Shi S, Li S, Wang Y, Song Q, Cheng X, Zhang W. Chiral polymer micro/nano-objects: evolving preparation strategies in heterogeneous polymerization. Sci China Chem. 2024. doi:10.1007/s11426-024-2443-0.
Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Appl Bio Mater. 2021;4(1):85–121. doi:10.1021/acsabm.0c00807
Wang Z, Ma Z, Sun J, Yan Y, Bu M, Huo Y, Li Y-F, Hu N. Recent Advances in Natural Functional Biopolymers and Their Applications of Electronic Skins and Flexible Strain Sensors. Polymers. 2021;13(5):813. doi:10.3390/polym13050813
Liu B, Desai AS, Sun X, Ren J, Pathan HM, Dabir V, Ashok A, Hou H, Pan D, Guo X, Bhagat N. An overview of sustainable biopolymer composites in sensor manufacturing and smart cities. Adv Compos Hybrid Mater. 2024;7:146:0123456789. doi:10.1007/s42114-024-00938-y
Wu Y, Liu J, Lin S, Huang K, Chen E, Huang K, Lei M. New pressure matrix array sensor composed of flexible mechanical sensor elements. Eng Sci. 2022;18:105–112. doi:10.30919/es8d626
Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B. Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohyd Polym. 2023;309:120678. doi:10.1016/j.carbpol.2023.120678
Sadasivuni KK, Saha P, Adhikari J, Deshmukh K, Ahamed MB, Cabibihan JJ. Recent advances in mechanical properties of biopolymer composites: a review. Polym Compos. 2020;41:32–59. doi:10.1002/pc.25356
Khatib M, Zohar O, Haick H. Self-healing soft sensors: from material design to implementation. Adv Mater. 2021;33(11):2004190. doi:10.1002/adma.202004190
Suginta W, Khunkaewla P, Schulte A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev. 2013;113:5458–5479. doi:10.1021/cr300325r
Hötzer B, Medintz IL, Hildebrandt N. Fluorescence innanobiotechnology: sophisticated fuorophores for novel applications. Small. 2012;8:2297–2326. doi:10.1002/smll.201200109
Lee H, Choi TK, Lee YB, Cho HR, Ghafari R, Wang L, ChoiHJ, Chung TD, Lu NS, Hyeon T, Choi SH, Kim DH. A graphene-based electrochemical device with thermos responsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol. 2016;11:566. doi:10.1038/nnano.2016.38
Wasilewski T., Gębicki J, Kamysz W. Bio-inspired approaches for explosives detection. TrAC. 2021;142:116330. doi:10.1016/j.trac.2021.116330
Taniya OS, Khasanov AF, Sadieva LK, Santra S, Nikonov IL, Al-Ithawi WKA, Kovalev IS, Kopchuk DS, Zyryanov GV, Ranu BC. Polymers and Polymer-Based Materials for the Detection of (Nitro-)explosives. Mater. 2023;16(18):6333. doi:10.3390/ma16186333
Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S. Development of Biopolymer and Conducting Polymer-Based Optical Sensors for Heavy Metal Ion Detection. Molecules. 2020;25:2548. doi:10.3390/molecules25112548
Vasudevan M, Perumal V, Karuppanan S, Ovinis M, RB, Gopinath SCB, Edison TNJI. A Comprehensive Review on Biopolymer Mediated Nanomaterial Composites and Their Applications in Electrochemical Sensors. Crit Rev Anal Chem. 2022;54(7):1871–1894. doi:10.1080/10408347.2022.213509
Gogoi B, Dutta P, Paul N, Dass NN, Sarma NS. Polycurcumin acrylate and polycurcumin methacrylate: Novel bio-based polymers for explosive chemical sensor. Sens Actuators A Chem. 2013;181:144–152. doi:10.1016/j.snb.2013.01.071
Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. J Am Chem Soc. 1983;105:1494. doi:10.1021/ja00344a013
Khasanov AF, Kopchuk DS, Kovalev IS, Taniya OS, Giri K, Slepukhin PA, Santra S, Rahman M, Majee A, Charushin VN, Chupakhin ON. Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives. New J Chem. 2017;41:309. doi:10.1039/c6nj02956f
Kovalev IS, Taniya OS, Slovesnova NV, Kim GA, Santra S, Zyryanov GV, Kopchuk DS, Majee A, Charushin VN, Chupakhin ON. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives. Chem Asian J. 2016;11:775–781. doi:10.1002/asia.201501310
Toal SJ, Trogler WC. Polymer sensors for nitroaromatic explosives detection. J Mater Chem. 2006;16:2871–2883. doi:10.1039/B517953J
Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parraad M, Gila S. Optical chemosensors and reagents to detect explosives. Chem Soc Rev. 2012;41:1261–1296. doi:10.1039/C1CS15173H
DOI: https://doi.org/10.15826/chimtech.2025.12.3.06
Copyright (c) 2025 Wahab K.A. Al-Ithawi, Artem V. Baklykov, Vadim A. Platonov, Youcef Ballou, Omkar Pokharkar, Albert F. Khasanov, Igor S. Kovalev, Igor L. Nikonov, Dmitry S. Kopchuk, Rina F. Samigullina, Yurii M. Shafran, Nikolay A. Belyaev, Grigory V. Zyryanov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice