Cover Image

Mechanosynthesis of equol-based polycarbonate and polyester as chemosensors for detection of nitro-explosives

Wahab K.A. Al-Ithawi, Artem V. Baklykov, Vadim A. Platonov, Youcef Ballou, Omkar Pokharkar, Albert F. Khasanov, Igor S. Kovalev, Igor L. Nikonov, Dmitry S. Kopchuk, Rina F. Samigullina, Yurii M. Shafran, Nikolay A. Belyaev, Grigory V. Zyryanov

Abstract


Equol (4',7-isoflavandiol) is a metabolite of isoflavandiol estrogen daidzein, which is found in soybeans and other plant sources. In this manuscript we wish to report the first mechanochemical approach to equol-based polymers, such as polycarbonate and polyester. Our approach involves the polycondensation reaction between 4',7-isoflavandiol (rac-equol) and triphosgene or oxalyl chloride under ball-milling conditions. The obtained polymers were characterized by means of 1H NMR- and IR-spectroscopy. To explore the possibility of practical application of the abovementioned polymers, the fluorescence “turn-off” response of the equol-based polycarbonate towards some common nitroanalytes (2,4-dinitrotioluene (DNT) and 2,4,6-trinitrophenol (picric acid, PA)) was investigated, and up to 1oM–1 Stern-Volmer constants were observed.

Keywords


equol; mechanosynthesis; polymers; fluorescence quenching; nitro-explosives visual detection

Full Text:

PDF

References


Gratz S, Borchardt L. Mechanochemical polymerization – controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill. RSC Adv. 2016;6:64799. doi:10.1039/c6ra15677k

Nirmani LPT, Pary FF, Nelson TL. Mechanochemical Suzuki polymerization for the synthesis of polyfluorenes. Green Chem Lett Rev. 2022;15(4):863–868. doi:10.1080/17518253.2022.2107406

Fantozzi N, Volle J-N, Porcheddu A, Virieux D, Garcı F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev. 2023;52:6680-6714. doi:10.1039/D2CS00997H

Das A, Ringu T, Ghosh S, Pramanik N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull. 2023;80:7247–7312. doi:10.1007/s00289-022-04443-4

Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers. 2021;13(16):2729. doi:10.3390/polym13162729

Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers. 2022;14(5):983. doi:10.3390/polym14050983

Bhatia SK. Microbial Biopolymers: Trends in Synthesis, Modification, and Applications. Polymers. 2023;1(6):1364. doi:10.3390/polym15061364

Puri V, Sharma A, Kumar P, Singh I. Thiolation of Biopolymers for Developing Drug Delivery Systems with Enhanced Mechanical and Mucoadhesive Properties: A Review. Polymers. 2020;12(8):1803. doi:10.3390/polym12081803

Ilang AK, Liang Y. Surface modifications of biopolymers for removal of per- and polyfluoroalkyl substances from water: Current research and perspectives. Water Res. 2024;249:120927. doi:10.1016/j.watres.2023.120927

Muir VG, Burdick JA. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem Rev. 2021;121(18):10908–10949. doi:10.1021/acs.chemrev.0c00923

Abou-Alfitooh SAM, El-Hoshoudy AN. Eco-friendly Modified Biopolymers for Enhancing Oil Production: A Review. J Polym Environ. 2024;32:2457–2483. doi:10.1007/s10924-023-03132-1

Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients. 2019;11(9):2231. doi:10.3390/nu11092231

Gong Y,Lv J, Pang X, Zhang S,Zhang G, Liu L,Wang Y, Li C. Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods. 2023;12(12):2334. doi:10.3390/foods12122334

Fujitani T, Fujii Y, Lyu Z, Sassa MH, Harada KH. Urinary equol levels are positively associated with urinary estradiol excretion in women. Sci Rep. 2021;11:19532. doi:10.1038/s41598-021-98872-2

Fatima A, Khan MS, Ahmad MW. Therapeutic potential of equol: A comprehensive review. Curr Pharm Des. 2020;26:5837–5843. doi:10.2174/1381612826999201117122915

Setchell KD, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol - a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132:3577–3584. doi:10.1093/jn/132.12.3577

Joy MN, Kovalev IS, Shabunina OV, Santra S, Zyryanov GV. Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants. Antioxidants. 2024;13(10):1198. doi:10.3390/antiox13101198

Al-Ithawi WAK, Al-Sammarraie ESA, Baklykov AV, Platonov VA, Altobee AMK., Glebov NS, Khasanov AF, Kovalev IS, Nikonov IL, Kopchuk DS, Zyryanov GV. Mechanosynthesis of pentiptycene-based polyesters and polycarbonates. Chimica Techno Acta. 2024; 11(3):202411306. doi:10.15826/chimtech.2024.11.3.06

García F, Gómez R, Sánchez L. Chiral supramolecular polymers. Chem Soc Rev. 2023;52:7524. doi:10.1039/D3CS00470H

Liu D, Zhao J, Zhao X, Shi S, Li S, Wang Y, Song Q, Cheng X, Zhang W. Chiral polymer micro/nano-objects: evolving preparation strategies in heterogeneous polymerization. Sci China Chem. 2024. doi:10.1007/s11426-024-2443-0.

Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Appl Bio Mater. 2021;4(1):85–121. doi:10.1021/acsabm.0c00807

Wang Z, Ma Z, Sun J, Yan Y, Bu M, Huo Y, Li Y-F, Hu N. Recent Advances in Natural Functional Biopolymers and Their Applications of Electronic Skins and Flexible Strain Sensors. Polymers. 2021;13(5):813. doi:10.3390/polym13050813

Liu B, Desai AS, Sun X, Ren J, Pathan HM, Dabir V, Ashok A, Hou H, Pan D, Guo X, Bhagat N. An overview of sustainable biopolymer composites in sensor manufacturing and smart cities. Adv Compos Hybrid Mater. 2024;7:146:0123456789. doi:10.1007/s42114-024-00938-y

Wu Y, Liu J, Lin S, Huang K, Chen E, Huang K, Lei M. New pressure matrix array sensor composed of flexible mechanical sensor elements. Eng Sci. 2022;18:105–112. doi:10.30919/es8d626

Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B. Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohyd Polym. 2023;309:120678. doi:10.1016/j.carbpol.2023.120678

Sadasivuni KK, Saha P, Adhikari J, Deshmukh K, Ahamed MB, Cabibihan JJ. Recent advances in mechanical properties of biopolymer composites: a review. Polym Compos. 2020;41:32–59. doi:10.1002/pc.25356

Khatib M, Zohar O, Haick H. Self-healing soft sensors: from material design to implementation. Adv Mater. 2021;33(11):2004190. doi:10.1002/adma.202004190

Suginta W, Khunkaewla P, Schulte A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev. 2013;113:5458–5479. doi:10.1021/cr300325r

Hötzer B, Medintz IL, Hildebrandt N. Fluorescence innanobiotechnology: sophisticated fuorophores for novel applications. Small. 2012;8:2297–2326. doi:10.1002/smll.201200109

Lee H, Choi TK, Lee YB, Cho HR, Ghafari R, Wang L, ChoiHJ, Chung TD, Lu NS, Hyeon T, Choi SH, Kim DH. A graphene-based electrochemical device with thermos responsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol. 2016;11:566. doi:10.1038/nnano.2016.38

Wasilewski T., Gębicki J, Kamysz W. Bio-inspired approaches for explosives detection. TrAC. 2021;142:116330. doi:10.1016/j.trac.2021.116330

Taniya OS, Khasanov AF, Sadieva LK, Santra S, Nikonov IL, Al-Ithawi WKA, Kovalev IS, Kopchuk DS, Zyryanov GV, Ranu BC. Polymers and Polymer-Based Materials for the Detection of (Nitro-)explosives. Mater. 2023;16(18):6333. doi:10.3390/ma16186333

Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S. Development of Biopolymer and Conducting Polymer-Based Optical Sensors for Heavy Metal Ion Detection. Molecules. 2020;25:2548. doi:10.3390/molecules25112548

Vasudevan M, Perumal V, Karuppanan S, Ovinis M, RB, Gopinath SCB, Edison TNJI. A Comprehensive Review on Biopolymer Mediated Nanomaterial Composites and Their Applications in Electrochemical Sensors. Crit Rev Anal Chem. 2022;54(7):1871–1894. doi:10.1080/10408347.2022.213509

Gogoi B, Dutta P, Paul N, Dass NN, Sarma NS. Polycurcumin acrylate and polycurcumin methacrylate: Novel bio-based polymers for explosive chemical sensor. Sens Actuators A Chem. 2013;181:144–152. doi:10.1016/j.snb.2013.01.071

Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. J Am Chem Soc. 1983;105:1494. doi:10.1021/ja00344a013

Khasanov AF, Kopchuk DS, Kovalev IS, Taniya OS, Giri K, Slepukhin PA, Santra S, Rahman M, Majee A, Charushin VN, Chupakhin ON. Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives. New J Chem. 2017;41:309. doi:10.1039/c6nj02956f

Kovalev IS, Taniya OS, Slovesnova NV, Kim GA, Santra S, Zyryanov GV, Kopchuk DS, Majee A, Charushin VN, Chupakhin ON. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives. Chem Asian J. 2016;11:775–781. doi:10.1002/asia.201501310

Toal SJ, Trogler WC. Polymer sensors for nitroaromatic explosives detection. J Mater Chem. 2006;16:2871–2883. doi:10.1039/B517953J

Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parraad M, Gila S. Optical chemosensors and reagents to detect explosives. Chem Soc Rev. 2012;41:1261–1296. doi:10.1039/C1CS15173H




DOI: https://doi.org/10.15826/chimtech.2025.12.3.06

Copyright (c) 2025 Wahab K.A. Al-Ithawi, Artem V. Baklykov, Vadim A. Platonov, Youcef Ballou, Omkar Pokharkar, Albert F. Khasanov, Igor S. Kovalev, Igor L. Nikonov, Dmitry S. Kopchuk, Rina F. Samigullina, Yurii M. Shafran, Nikolay A. Belyaev, Grigory V. Zyryanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice