
Antibacterial properties of biocides based on silver nanoparticles and organic acids
Abstract
Keywords
Full Text:
PDFReferences
Novikov A, Sayfutdinova A. Natural nanoclay-based silver–phosphomolybdic acid composite with a dual antimicrobial effect. ACS Omega. 2022;6728(8):7. doi:10.1021/acsomega.1c06283
Khalid Ayesha, Naeem Muhammad. State of the art synthesis of Ag-ZnO-based nanomaterials by atmospheric pressure microplasma technique. MDPI. 2024;7(3):680–697. doi:10.3390/surfaces7030044
Gurbatov SO, Zhizhchenko AYu. Au–Si Nanocomposites with High Near-IR Light-to-Heat Conversion Efficiency via Single-Step Reactive Laser Ablation of Porous Silicon for Theranostic Application. ACS Appl Nano Mater. 2024;7(9):10779-10786. doi:10.1021/acsanm.4c01289
Kuznetsova OV, Kolotilina NK. A de novo nanoplatform for the delivery of metal-based drugs studied with high-resolution ICP-MS. Talanta. 2023;124035(253):0039–9140. doi:10.1016/j.talanta.2022.124035
Melnikov D, et al. Strategies for palladium nanoparticles formation on halloysite nanotubes and their performance in acetylene semi-hydrogenation. Appl Clay Sci. 2023;106763:232. doi:10.1016/j.clay.2022.106763
Jia S, Fan M. Silanization of heat-treated halloysite nanotubes using Y-aminopropyitriethoxysilane. Appl Clay Sci. 2019;105204(180). doi:10.1016/j.clay.2019.105204
Vinokurtseva A, et al. Differential effects of acetylsalicylic acid and mitomycin C on cytokine-induced Tenon's capsule myofibroblast transdifferentiation and activity: Implications for glaucoma surgery. Experimen Eye Res. 2022;109284(225). doi:10.1016/j.exer.2022.109284
Bose N, et al. Development and characterization of AgHNT:@ SPU film Joaded with letrozole as drug delivery system and its anticancer activity. J Drug Delivery Sci Technol. 2023;104557(85). doi:10.1016/j.jddst.2023.104557
Umapathy VR, et al. Current trends and future perspectives on dental nanomaterials-an overview of nanotechnology strategies in dentistry. J King Saud Univ-Sci. 2022;102231(7):34. doi:10.1016/j.jksus.2022.102231
Zhang J, et al. Preparation and MRI performances of core-shell structural PEG salicylic acid-gadolinium composite nanoparticles. J Rare Earths. 2022;7(40):1098-1105. doi:10.1016/j.jre.2021.09.006
Bibi Z, Iqbal M. Synthesis of metal loaded acrylic acid cryogels for efficient catalytic degradation of dyes and antibacterial activity. J Molecular Structure. 2025;141721(1333). doi:10.1016/j.molstruc.2025141721.
Erdem O, Mutlu A. Production and Characterization of Eco-composite Polylactic Acid Films Doped with Carob Pod Powder/Silver Nanoparticles and Their Potential Utilization in Packaging Applications. J Polymers Environ. 2024;1572–8919(2:33):730–742. doi:10.1007/s10924-024-03443-x
Stavitskaya A, Shakhbazova C. Antibacterial properties and in vivo studies of tannic acid-stabilized silver - halloysite nanomaterials. Clay Miner. 2020;55(2):112–119. doi:10.1180/clm.2020.17
Yue R, Wen X. Eco-friendly fabrication of Au nanoparticles immobilized on tannin-aminopropyltriethoxysilane-coated halloysite nanotubes for thermally tunable catalysis. J Mater Sci. 2020;14(1):55. doi:10.1007/s10853-020-05208-y
Sharma A, Churungu D. Cosmeceuticals significance of hydroxybenzoic acids. Specialized Plant Metabolites as Cosmeceuticals. 2024;118:99. doi:10.1016/B978-0-443-19148-0.00005-X
Goni-Ciaurriz L, Rosas-Val P. Photocatalytic and antibacterial performance of β-cyclodextrin-TiO2 nanoparticles loading sorbic and benzoic acids. Colloid Interface Sci Commun. 2023;100747:57. doi:10.1016/j.colcom.2023.100747
Shen H, Chen J. Ethyl cellulose matrixed poly(sulfur-co-sorbic acid) composite films: Regulation of properties and application for food preservation. Int J Biol Macromolecules. 2024;135183:279. doi:10.1016/j.ijbiomac.2024.135183
Motsoene F, Abrahamse H. Lauric acid and tea tree oil-loaded solid lipid nanoparticles: Physicochemical characterisation and antibacterial activity against pathogenic bacteria. Materials Today Commun. 2025;111331:42. doi:10.1016/j.mtcomm.2024.111331
Xu W, McClements DJ. Effect of tannic acid modification on antioxidant activity, antibacterial activity, environmental stability and release characteristics of quercetin loaded zein-carboxymethyl chitosan nanoparticles. Int J Biol Macromolecules. 2024;135853:280. doi:10.1016/j.ijbiomac.2024.135853
Li S, Fang C. Antimicrobial, antioxidative, and UV-blocking pectin/gelatin food packaging films incorporated with tannic acid and silver nanoparticles for strawberry preservation. Int J Biol Macromolecules. 2025;142445:308. doi:10.1016/j.ijbiomac.2025.142445
Takallu S, Kakian F. Development of antibacterial collagen membranes with optimal silver nanoparticle content for periodontal regeneration. Sci Rep. 2024;7262:14. doi:10.1038/s41598-024-57951-w
Netala VR, Hou T. Rosmarinic acid-rich perilla frutescens extract-derived silver nanoparticles: a green synthesis approach for multifunctional biomedical applications including antibacterial, antioxidant, and anticancer activities. Molecules. 2024;29(6):1250. doi:10.3390/molecules29061250
Rahman KA, Ahmed M. Beta maritima mediated silver Nanoparticles: Characterization and evaluation of Antibacterial, Antifungal, and antioxidant activities. J King Saud University Sci. 2024;3647:36. doi:10.1016/j.jksus.2024.103219
Gheisari F, Reza KS. Bromelain-loaded silver nanoparticles: Formulation, characterization and biological activity. Inorganic Chemistry Communications. 2024;1387-7003(112006):161. doi:10.1016/j.inoche.2023.112006
Patel, J., Kumar, G.S. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. Discover Nano. 2024;19:85. doi:10.1186/s11671-024-04021-9
Kulkarni C, Mohanty H, Bhagit A, et al. Anti-plasmodial and mosquitocidal potential of metallic nanoparticles: a perspective. Proc Indian Natl Sci Acad. 2022;88:576–91. doi:10.1007/s43538-022-00097-y
Pérez-Díaz MA, Prado-Prone G. Nanoparticle and nanomaterial involvement during the wound healing process: an update in the field. J Nanopart Res. 2023;25:27. doi:10.1007/s11051-023-05675-9
Jiang Y, Peng Z, Yang Y. Facile preparation of sepiolite-based composites and their antibacterial/rheological properties. Clay Minerals. 2024;59(2):127–135. doi:10.1180/clm.2024.13
Yizhi J, Li W. Antibacterial and self-healing sepiolite-based hybrid hydrogel for hemostasis and wound healing. Biomater Adv. 2024;213838:159. doi:10.1016/j.bioadv.2024.213838
Yunhong J, Yongwen Y. Sustainable sepiolite-based composites for fast clotting and wound healing. Biomater Adv. 2023;213402:149. doi:10.1016/j.bioadv.2023.213402
Rolim WR, Lamilla C. Comparison of antibacterial and antibiofilm activities of biologically synthesized silver nanoparticles against several bacterial strains of medical interest. Energ Ecol Environ. 2019;4:143–59. doi:10.1007/s40974-019-00123-8
Sinha Shreya, Sharma Rahul. Multifunctional oleic acid functionalized iron oxide nanoparticles for antibacterial and dye degradation applications with magnetic recycling. Mater Adv. 2025;2268:6. doi:10.1039/d5ma00036j
Van Khien Nguyen, Thi Anh Xuan Chu. Role of citric acid coating in enhancing applicability of CoFe2O4 nanoparticles in antibacterial and hyperthermia. Mater Today Commun. 2024;107982:38. doi:10.1016/j.mtcomm.2023.107982
DOI: https://doi.org/10.15826/chimtech.2025.12.3.05
Copyright (c) 2025 Christina Shakhbazova, Marina Gaidym, Alexandra Vishnevich, Maria Rubtsova, Dmitry Kopitsyn, Andrey Novikov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice