Cover Image

Crystallization of magnesium aluminophosphate molecular sieves MAPO-11 using different aluminum sources and their application in the hydroisomerization of n-hexadecane

Dmitry Serebrennikov, Maxim Vlasov, Olga Travkina, Nadezhda Filippova, Ekaterina Mescheryakova, Rezeda Kuvatova, Denis Sabirov, Marat R. Agliullin

Abstract


Magnesium aluminophosphate molecular sieves are promising materials for the development of catalysts for the hydroisomerization of higher n-paraffins in fuels and oils. One of the key issues in increasing their activity and selectivity in hydroisomerization is the necessity to reduce the diffusion limitations by reducing the size of the crystals or creating a developed secondary porous structure. The physicochemical and catalytic properties of MAPO-11 molecular sieves prepared with different aluminum sources in the hydroisomerization of n-hexadecane were studied. The influence of the aluminum source on the morphology and size of the MAPO-11 crystals was determined. The use of aluminum isopropoxide as the aluminum source allows MAPO-11 to be obtained with a smaller crystal size and larger mesopore volume compared to the use of boehmite. Due to the stronger acidic sites in MAPO-11 compared to SAPO-11, Pt-based catalysts based on MAPO-11 can achieve maximum isomer yield at lower temperatures. MAPO-11-based catalytic systems with a micro-mesoporous structure exhibit superior activity and selectivity in the hydroisomerization of n-hexadecane in comparison with microporous molecular sieves.

Keywords


molecular sieves; magnesium aluminum phosphates MAPO-11; micro-mesoporous materials; hydroisomerization of higher n-paraffins; bifunctional catalysts

Full Text:

PDF

References


Pérez-Botella E, Valencia S, Rey F. Zeolites in adsorption processes: state of the art and future prospects. Chem Rev. 2022;122:17647−17695. doi:10.1021/acs.chemrev.2c00140

Martínez C, Corma A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coord Chem Rev. 2011;255:1558–1580. doi:10.1016/j.ccr.2011.03.014

Potter ME. Down the microporous rabbit hole of silicoaluminophosphates: recent developments on synthesis, characterization, and catalytic applications. ACS Catal. 2020;10(17):9758–9789. doi:10.1021/acscatal.0c02278

Hartmann M, Elangovan SP. Chapter 4 – Catalysis with microporous aluminophosphates and silicoaluminophosphates containing transition metals. AdvNanoporous Mater. 2010;1(1):237–312. doi:10.1016/S1878-7959(09)00104-2

Baerlocher C, McCusker LB, Olson DH. Atlas of zeolite framework types. Elsevier; 2007. 404 p.

Guo L, Fan Y, Bao X, Shi G, Liu H. Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization. J Catalysis. 2013;301:162–173. doi:10.1016/j.jcat.2013.02.001

Yadav R, Sakthivel A. Silicoaluminophosphate molecular sieves as potential catalysts for hydroisomerization of alkanes and alkenes. Appl Catal A Gen. 2014;481:143–160. doi:10.1016/j.apcata.2014.05.010

Zhang F, Liu Y, Sun Q, Dai Z, Gies H, Wu Q, Pan S, Bian C, Tian Z, Meng X, Zhang Y, Zou X, Yi X, Zheng A, Wang L, Xiao FS. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10–20 nm thickness and partially blocked acidic sites. Chem Commun. 2017;53(36):4942–4945. doi:10.1039/C7CC01519D

Wang W, Wu W, Liu CJ. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure. Catalysis Sci Technol. 2019;9(16):4162−4187. doi:10.1039/C9CY00499H

Bértolo R, Silva JM, Ribeiro MF, Martins A, Fernandes A. Microwave synthesis of SAPO-11 materials for long chain n-alkanes hydroisomerization: Effect of physical parameters and chemical gel composition. Appl Catal A Gen. 2017;542:28–37. doi:10.1016/j.apcata.2017.05.010

Yang Z, Li J, Liu Y, Liu C. Effect of silicon precursor on silicon incorporation in SAPO-11 and their catalytic performance for hydroisomerization of n-octane on Pt-based catalysts. J Energy Chem. 2017;26:688–694. doi:10.1016/j.jechem.2017.02.002

Liu P, Ren J, Sun Y. Synthesis, characterization and catalytic properties of SAPO-11 with high silicon dispersion. Catal Commun. 2008;9:1804–1809. doi:10.1016/j.catcom.2008.01.030

Li L, Shen K, Huang X, Lin Y, Liu Y. SAPO-11 with preferential growth along the a-direction as an improved active catalyst in long-alkane isomerization reaction. Micropor Mesopor Mater. 2021;313:110827. doi:10.1016/j.micromeso.2020.110827

Jin D, Ye G, Zheng J, Yang W, Zhu K, Coppens MO, Zhou X. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of pre manufactured building blocks. ACS Catal. 2017;7:5887−5902. doi:10.1021/acscatal.7b01646

Tapp NJ, Milestone NB, Bibby DM, Synthesis of AIPO4-11. Zeolites. 1988;8:183. doi: 10.1016/S0144-2449(88)80305-1

Chen Y, Luo X, Chang P, Geng S. Crystal morphology control of AlPO4-11 molecular sieves by microwave irradiation. Mater Chem Phys. 2009;113:899. doi:10.1016/j.matchemphys.2008.08.038

Agliullin MR, Khairullina ZR, Faizullin AV, Kutepov BI. Crystallization of AlPO4-11 Aluminophosphate from Various Aluminum Sources. Pet Chem. 2019;59:349–353. doi:10.1134/S0965544119030010

Agliullin M R, Shamanaeva IA., Zabirov AR, Lazarev VV, Maistrenko VN, Kutepov BI. Influence of the Nature of the Al Source on the Properties of the Initial Reaction Gels for Crystallization of Molecular Sieve AlPO4-11. Pet Chem. 2022;62:291–300. doi:10.1134/S096554412203001X

Agliullin MR, Yakovenko RE, Kolyagin YG, Serebrennikov DV, Vildanov FS, Prosochkina TR, Kutepov BI. Relation between Morphology and Porous Structure of SAPO-11 Molecular Sieves and chemical and phase composition of silicoaluminophosphate. Gels. 2022;8:142. doi:10.3390/gels8030142

Agliullin MR, Serebrennikov DV, Khazipova AN, Malunov AI, Dement’ev KI, Kutepov BI Рt/SAPO-11 Catalytic systems differing in acidity and secondary pore structure in n-hexadecane hydroisomerization. Pet Chem. 2023;63:1087–1096. doi:10.1134/S096554412308008X

Yang X, Xu Z, Tian Z, Ma H, Xu Y, Qu W, Lin L. Performance of Pt/MgAPO-11 catalysts in the hydroisomerization of n-dodecane. Catal Lett. 2006;109:139–145. doi:10.1007/s10562-006-0070-6

Nur H, Hamdan H. The ionic size of metal atoms in correlation with acidity by the conversion of cyclohexanol over MeAPO-5. Mater Res Bull. 2001;36(1–2):315–322. doi:10.1016/S0025-5408(00)00472-4

Corà F, Catlow CRA, Civalleri B, Orlando R. Acid strength of low-valence dopant ions in microporous zeolites and AlPOs. J Phys Chem B. 2003;107(43):11866–11870. doi:10.1021/jp035553l

Höchtl M, Jentys A, Vinek H. Hydroisomerization of Heptane Isomers over Pd/SAPO Molecular Sieves: Influence of the Acid and Metal Site Concentration and the Transport Properties on the Activity and Selectivity. J Catal. 2000;190(2):419–432. doi:10.1006/jcat.1999.2761

Maesen TL, Schenk M, Vlugt TJH, De Jonge JP, Smit B. The Shape Selectivity of Paraffin Hydroconversion on TON-, MTT-, and AEL-Type Sieves. J Catal. 1999;188(2):403–412. doi:10.1006/jcat.1999.2673




DOI: https://doi.org/10.15826/chimtech.2025.12.3.01

Copyright (c) 2025 Dmitry Serebrennikov, Maxim Vlasov, Olga Travkina, Nadezhda Filippova, Ekaterina Mescheryakova, Rezeda Kuvatova, Denis Sabirov, Marat R. Agliullin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice