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Abstract 
Three Cu(II) complexes containing (poly)fluorine ligands based on 5-aryl-

2,2’-bipyridine-6(6’)-carboxylic acids have been synthesized for the first 
time. These complexes belong to either triclinic (P-1) or orthorhombic (Iba2) 
crystal systems. The packing of molecules in Cu(II) complexes, confirmed by X-

ray diffraction (XRD) structural analysis, seems to be due to the effect of fluorine 
atoms involved in the formation of hydrogen bonds or intermolecular short con-
tacts of type C–F…π, as well as the influence of the crystallization solvent mole-

cules. The developed coordination compounds could be of interest in the de-
sign of pharmacologically active substances, chemosensors, and catalytic 

systems. 
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Key findings 

● Synthesis of fluorinated ligands and their conversion to copper(II) complexes. 

● Copper(II) complexes with distorted square pyramidal and octahedral coordination ge-

ometries and typical bond lengths. 

● Supramolecular interactions, including hydrogen bonding and π-π stacking, as driving 

forces for the crystal packing of the complexes. 

© 2025, the Authors. This article is published in open access under the terms and conditions of the 

Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Cu(II) complexes of 2,2'-bipyridines and their condensed an-

alogues are known to be of interest in the design of pharma-

cologically active compounds with antitumor [1, 2] or anti-

bacterial [3] activity. Besides, these compounds are also 

widely used as catalysts [4] and agents for the generation of 

reactive oxygen species (ROS) for photodynamic therapy [5]. 

Moreover, complexes of 5-(het)aryl-2,2'-bipyridines are 

known to demonstrate antimicrobial [6] and chemosensory 

[7] properties, e.g., for the determination of halogen ions [8]. 

At the same time, tridentate N^N^O ligands based on 2,2'-

bipyridine-6-carboxylic acids are currently represented by 

only a few known examples [9–12]. It is important to note 

that the targeted modification of ligands with various elec-

tronegative groups, in particular (poly)fluoroaromatic ones, 

allows one to tune their physicochemical, luminescent, and 

redox properties, and also directly affects their crystal struc-

ture and spatial packing [13–17]. Thus, this paper deals with 

the study of (poly)fluorinated 2,2'-bipyridine-6-carboxylic 

acids as ligands for copper(II) cations, as well as the effect of 

fluorine atoms on the structure and properties of the corre-

sponding complexes. 
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2. Experimental part 

All reagents were purchased from Shanghai Macklin Bio-

chemical Technology and used without further purification. 

NMR spectra were recorded on a Bruker Avance-400 and 

Bruker Avance-600 spectrometers at 298 K, digital resolu-

tion ± 0.01 ppm, using TMS as internal standard for 1H and 

CFCl3 for 19F spectra. Elemental analyses were performed 

on a PE 2400 II CHN-analyzer (Perkin Elmer). Mass spec-

trometry data of compounds 2 and 3 were acquired on a 

Shimadzu GCMS-QP2010 Ultra mass-spectrometer with 

electron ionization; the mass spectrometry data of the other 

compounds were acquired using an Agilent 6545 Q-TOF LC-

MS with electrospray ionization.  

The X-ray diffraction analysis of compound Cu•6A was 

carried out on an automatic 4-circle Xcalibur 3 X-ray dif-

fractometer with a CCD detector using a standard technique 

(graphite monochromator, Mo Kα radiation, and ω scanning 

in 1° increments at T = 295(2) K). An empirical correction 

for absorption was applied. The X-ray diffraction analysis 

of complexes Cu•5 and Cu•6 was performed on an auto-

matic Rigaku XtaLAB Synergy four-circle diffractometer 

with a HyPix-6000HE CCD detector and a PhotonJet X-ray 

source according to a standard procedure (MoKα radiation, 

graphite monochromator, and ω scanning in 1° increments) 

at T = 295(2) K. An empirical correction for absorption was 

applied. The measured reflection data were indexed, inte-

grated, and scaled using the CrysAlisPro software package 

[18]. The structures were deciphered by the internal phas-

ing method according to the SHELXT program [19] and re-

fined by the least squares method for F2 using the SHELXL 

program [20]. The decoding and refinement of the struc-

ture were carried out in the Olex2 software shell [21]. Non-

hydrogen atoms were refined in the anisotropic approxima-

tion. Hydrogen atoms at oxygen atoms were identified from 

the Fourier difference series. All other hydrogen atoms 

were placed in calculated positions in accordance with ste-

reochemical criteria and refined according to the rider 

scheme. The results of X-ray diffraction analysis are regis-

tered in the Cambridge Structural Database under the CCDC 

numbers 2421972 (for Cu•5), 2435014 (for Cu•6) and 

2421949 (for Cu•6A). This data is freely available and can 

be requested at https://www.ccdc.cam.ac.uk/.  

The X-ray powder diffraction data for complex Cu•6 was 

collected on a «Empyrean» high-resolution X-ray diffrac-

tometer in copper filtered radiation. Processing and calcu-

lation of parameters was carried out using the software 

package HighScore Plus 4.1. 

The starting 1,2,4-triazine 1 [22] and 2,2′-bipyridine-6-

carbonitrile 6 [23] were synthesized as described in the lit-

erature. 

Compounds 2 and 3 were prepared according to previ-

ously reported methodology [24] using pentafluorobenzene 

(1 mmol) and methyl 6-(6-phenyl-1,2,4-triazin-3-yl)pico-

linate 1 (1 mmol).  

Methyl 6-(5-(perfluorophenyl)-6-phenyl-4,5-dihy-

dro-1,2,4-triazin-3-yl)picolinate (2). M.p. 178–180 oC. 

Yield 345 mg (0.75 mmol, 75%). NMR 1H (600 MHz, CDCl3, 

δ, ppm): 4.03 (s, 3H, Me), 6.39 (s, 1H, Csp3-H), 7.33–7.38 

(m, 3H, Ph), 7.65–7.71 (m, 2H, Ph), 7.94 (dd, 1H, J = 7.8, 7.8 

Hz, H-4), 8.22 and 8.30 (both d, 1H, 3J 7.8 Hz, H-6 and H-

3), 10.42 (br. s, 1H, NH). NMR 19F (565 MHz, CDCl3, δ, ppm): 

(-161.50)-(-161.39) (m, 2F), (-154.28)-(-154.18) (m, 1F),  

(-142.74)-(-142.51) (m, 2F). NMR 13C (151 MHz, CDCl3, δ, 

ppm): 47.1, 52.9, 115.8-115.4 (m), 125.6, 126.9, 128.8, 129.9, 

130.9, 132.5, 134.3, 137.7 (dm, J = 250.3 Hz), 138.2, 138.6, 

140.9 (dm, J = 250.6 Hz), 145.5 (dm, J = 249.5 Hz), 146.7, 

148.4, 149.0, 165.0, 167.8. MS (EI, m/z): found 460; calcu-

lated 460 [M+]. Found, %: C 57.47, H 2.91, N 12.22. For 

C22H13F5N4O2 calculated, %: C 57.40, H 2.85, N 12.17, O 

6.95, F 20.63. 

Methyl 6-(5-(perfluorophenyl)-6-phenyl-1,2,4-tria-

zin-3-yl)picolinate (3). M.p. 161–163 oC. Yield 338 mg 

(0.74 mmol, 98%). NMR 1H (600 MHz, CDCl3, δ, ppm): 

4.04 (s, 3H, Me), 7.43–7.47 (m, 2H, Ph), 7.49–7.54 (m, 1H, 

Ph), 7.57–7.61 (m, 2H, Ph), 8.14 (dd, 1H, 3J 7.8, 7.8 Hz, H-

4), 8.36 and 8.23 (both dd, 1H, 3J 7.8 Hz, 4J 0.8 Hz, H-6 and 

H-3). NMR 19F (565 MHz, CDCl3, δ, ppm):  

(-159.73)-(-159.62) (m, 2F), (-149.49)-(-149.41) (m, 1F), 

(-139.39)-(-139.31) (m, 2F). NMR 13C (151 MHz, CDCl3, δ, 

ppm): 53.1, 111.7-111.4 (m), 128.5, 128.8, 129.0, 130.9, 

132.5, 133.4, 137.8 (dm, J = 252.5 Hz), 138.5, 142.7 (dm,  

J = 250.7 Hz), 144.5 (dm, J = 252.5 Hz), 146.8, 149.1, 152.3, 

158.5, 160.7, 165.4, 167.8. MS (EI, m/z): found 458; calcu-

lated 458 [M+]. Found, %: C 57.71, H 2.45, N 12.26. For 

C22H11F5N4O2 calculated, %: C 57.65, H 2.42, N 12.22, O 6.98, 

F 20.72. 

Methyl 6′-(perfluorophenyl)-5′-phenyl-2,2′-bipyri-

dine-6-carboxylate (4). 105 mg (0.23 mmol) of 1,2,4-tria-

zine 3 was suspended in 25 mL of 1,2-dichlorobenzene, 

0.12 mL (1.15 mmol) of 2,5-norbornadiene was added to the 

suspension, and the resulting mixture was stirred under re-

flux for 27 h (with the addition of 0.06 mL of 2,5-norborna-

diene every 9 h). The solvent was removed under reduced 

pressure. The product was isolated by column chromatog-

raphy (CH2Cl2 as eluent, Rf 0.4). An analytical sample was 

obtained by recrystallization from MeCN. Yield 83 mg 

(0.18 mmol, 79%). NMR 1H (400 MHz, CDCl3, δ, ppm): 4.06 

(s, 3H, OMe), 7.19–7.24 (m, 2H, Ph), 7.31–7.36 (m, 3H, Ph), 

7.93–7.99 (m, 2H, H-3′, H-4), 8.16 and 8.60 (both dd, 1H, 3J 

= 7.6 Hz, 4J = 0.8 Hz, H-3 and H-5), 8.71 (d, 1H, 3J = 8.0 Hz, 

H-4′). NMR 19F (376 MHz, CDCl3, δ, ppm): (-162.20)- 

(-160.00) (m, 2F), -154.19 (dd, J = 20.4 Hz, 20.4 Hz, 1F),  

(-140.85)-(-140.70) (m, 2F). MS (ESI, m/z (Irel, %)): found 

457.10; calculated 457.10 [M+H]+. Found, %: C 63.08, H 

2.93, N 6.22. For C24H13F5N2O2 calculated, %: C 63.16, H 

2.87, N 6.14. 

Sodium 6′-(perfluorophenyl)-5′-phenyl-2,2′-bipyri-

dine-6-carboxylate (5). 91 mg (0.20 mmol) of ester 4 were 

suspended in 30 mL of ethanol, and then the resulting sus-

pension was heated until a solution was formed. An 
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equimolar amount of NaOH (8.0 mg, 0.20 mmol) was added 

to the solution cooled to room temperature, and the result-

ing mixture was kept at room temperature for 12 h. The sol-

vent was then removed under reduced pressure. The result-

ing product was used in the next step without further puri-

fication. Yield 83 mg (0.18 mmol, 90%). NMR 1H (400 MHz, 

CD3OD, δ, ppm): 7.26–7.31 (m, 2H, Ph), 7.34–7.42 (m, 3H, 

Ph), 7.96 (dd, 1H, 3J 7.6, 7.6 Hz, H-4), 8.06-8.11 (m, 2H, H-

3′, H-3), 8.44 (dd, 1H, 3J 8.0, 4J 1.0 Hz, H-5), 8.96 (d, 1H, 3J 

8.0 Hz, H-4′). NMR 19F (376 MHz, CD3OD, δ, ppm):  

(-165.45)-(-165.25) (m, 2F), –157.57 (dd, J = 19.0, 19.0 Hz, 

1F), (-143.20)-(-143.15) (m, 2F). MS (ESI, m/z (Irel, %)): 

found 441.07; calculated 441.07 [M-Na]-. 

Complex Cu•5. A solution of 31 mg (0.18 mmol) 

CuCl2•2H2O in 15 mL of ethanol was added to a solution of 

70 mg (0.15 mmol) of sodium salt 5 in 25 mL of ethanol. 

The resulting reaction mixture was stirred at 60 °C for 10 h. 

After cooling to rt, the solution was concentrated under re-

duced pressure, the resulting precipitate was filtered, 

washed with ethanol and dried. A single crystal of com-

pound Cu•5 suitable for X-ray diffraction analysis was ob-

tained by slow evaporation of its water-methanol solution 

(solvent ratio 1:1). Yield 47 mg (0.05 mmol, 66%). IR, ν/cm-

1: 1645 (CO). MS (ESI, m/z (Irel, %)): found 946.07; calcu-

lated 946.07 [M+H]+. Found, %: C 58.26, H 2.01, N 6.14. 

For C46H20CuF10N4O4 calculated, %: C 58.39, H 2.13, N 5.92. 

Crystallographic data are represented in Table S1. CCDC 

registration code 2421972. 

Complex Cu•6. A solution of 32 mg (0.19 mmol) 

CuCl2•2H2O in 15 mL of ethanol was added to a suspension 

of 50 mg (0.16 mmol) of 2,2′-bipyridine 6 in 25 mL of etha-

nol. The resulting reaction mixture was stirred at 60 ⁰C for 

10 h. After cooling to rt, the solution was concentrated un-

der reduced pressure, the resulting crude precipitate was 

filtered, washed with ethanol and dried. A single crystal of 

compound Cu•6 suitable for X-ray diffraction analysis was 

obtained by recrystallization (EtOH:MeOH:water, 7:2:1). 

Yield 45 mg (0.05 mmol, 61%). IR, ν/cm-1: 1674 (CO). MS 

(ESI, m/z (Irel, %)): found 863.01; calculated 863.01 

[M+H]+. Found, %: C 54.23, H 3.79, N 6.16. For 

C40H28Cl2Cu2F2N4O4•2MeOH calculated, %: C 54.31, H 3.91, 

N 6.03. Crystallographic data are represented in Table S1. 

CCDC registration code 2435014. 

The crystals of complex Cu•6A suitable for X-ray diffrac-

tion analysis were obtained by low evaporation of the wa-

ter-methanol (1:1) solution of the crude precipitate. ESI-

MS, m/z (Irel, %): found 863.01; calculated 863.01 [M+H]+. 

Crystallographic data are represented in Table S1. CCDC 

registration code 2421949. 

3. Results and Discussion 

To study the effect of fluoroaromatic groups on the struc-

tural features of the complexes, two 2,2’-bipyridine ligands 

containing one (6) and five (5) fluorine atoms were synthe-

sized (Scheme 1). For this purpose, the “1,2,4-triazine” 

methodology [25, 26] for the synthesis of (oligo)pyridines 

was used. The reason for the application of this approach 

was due to the possibility of convenient functionalization of 

the triazine cycle using nucleophilic hydrogen substitution 

reactions (SN
H) following the basic principles of green 

chemistry [27–29]. Thus, previously described [22] pyri-

dyltriazine 1 bearing an ester group at position C6 of the 2-

pyridyl fragment, being a precursor of the carboxyl group, 

was used as the starting compound. The methodology of nu-

cleophilic substitution of hydrogen (SN
H) was employed 

herein to incorporate a pentafluorophenyl substituent into 

position C5 of the triazine, in accordance with the previ-

ously outlined procedure [24]. It is important to note that 

the presence of the ester group has been found not to result 

in difficulties for this transformation. Thus, at the first 

stage, stable σH-adduct 2 was synthesized in 75% yield as a 

result of interaction with pentafluorophenyl lithium, ob-

tained in situ, under anhydrous conditions. In the case of 

functionalization of 1,2,4-triazines by this methodology, the 

formation of stable σH-adducts is typical [30, 31]. At the 

next stage, DDQ (2,3-dichloro-4,5-dicyanobenzoquinone) 

was utilized as an oxidizing agent for its aromatization, 

with an almost quantitative yield being achieved. Subse-

quent conversion of the triazine ring of compound 3 into a 

pyridine one by reaction with 2,5-norbornadiene and alka-

line hydrolysis of the ester group of 4 led to the target lig-

and as the sodium salt 5. Complex Cu•5 was obtained by 

reaction of 5 with copper(II) chloride in ethanol. The corre-

sponding single crystals of Cu•5 for X-ray diffraction anal-

ysis (XRD) were obtained by slow evaporation of their so-

lutions in a mixture of methanol and water (1:1). 

Meanwhile, to produce the copper complex Cu•6 con-

taining one fluorine atom, the described earlier [9, 23] 2,2’-

bipyridine-6-carbonitrile 6 was used (Scheme 2). This com-

pound was also obtained by a series of SN
H and Boger reac-

tions [32], and in the latter case 1-morpholinocyclopentene 

was exploited as a dienophile. Thus, the hydrolysis of the 

cyano group was found to take place as a result of boiling 

the reaction mixture in aqueous ethanol in the presence of 

copper(II) chloride, with the target copper complex form-

ing in one stage [9] (Scheme 2). It is worth noting that this 

approach significantly simplifies the synthesis of the corre-

sponding acids, as compared with the usual method for hy-

drolysis of the cyano group that, for such compounds, re-

quires prolonged heating in 50% sulfuric acid [23].  

In particular, this approach was utilized in the prepara-

tion of the corresponding Ln(III) complexes of 2,2'-bipyri-

dine-6-carboxylic acids, when the possibility of hydrolysis 

under standard conditions was considerably complicated 

because of side reactions on the aromatic substituent of bi-

pyridine [23, 33]. Complex Cu•6 was isolated by recrystal-

lization of the precipitate obtained by the above process 

from an ethanol-methanol-water mixture (7:2:1). In addi-

tion, as a result of slow evaporation of the solution of this 

precipitate we were able to obtain the crystals of another 

minor form of copper complex Cu•6A, also suitable for X-
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ray. These newly obtained data suggest that the authors of 

[9] also synthesized mixtures of different forms of copper 

complexes, but only one of them was determined by X-ray 

in each case. Moreover, in addition to the X-ray data, only 

the results of elemental analysis are given in the article, and 

for each ligand they recorded a different form of the che-

late. 

The obtained chelates Cu•5 and Cu•6 were character-

ized by elemental analysis, IR, and mass spectra. In partic-

ular, in the IR spectra (Figures S11, S12), the vibrational 

bands of the carbonyl group in the region 1645–1674 cm–1 

can be observed. According to the previously described data 

[23, 34], the vibrational bands of the carbonyl group in the 

case of the corresponding 5-aryl-2,2'-bipyridin-6(6')-car-

boxylic acids are in the range of 1720–1744 cm–1, i.e., one 

can conclude that the free ligands are absent from the com-

position of the obtained products. In addition, for Cu•6 

complex it is important to note the absence of absorption 

bands of the cyano group in the region of 2220 cm-1. The 

absorption spectra of the novel complexes in acetonitrile 

are also presented (Figure S13). In case of complex Cu•6A, 

the crystals were obtained in rather limited quantities, suf-

ficient only for mass spectroscopy in addition to X-ray. In 

the absorption spectra two broad bands at 315 nm and 247-

262 nm were discovered: the first one could be attributed 

to the n→π* transitions, while the second one could be as-

signed to the π → π* transitions (Figure S13). 

According to X-ray data, the Cu•6 complex is a dimer 

and crystallizes as a solvate with a methanol molecule. The 

geometry of a similar complex was shown earlier in [9], but 

the analysis of intermolecular interactions in the crystal 

was not presented by the authors. Each copper(II) atom in 

complex Cu•6 has a distorted square planar coordination, 

where the Cu-Cu distance is 3.271 Å (Figure 1), whereas for 

the complex known in the literature it is 3.223 Å. 

The hydrogen atom of the hydroxyl group of the solv-

ated methanol molecule in the Cu•6 crystal forms a sym-

metric shortened O-H...O-type bifurcate contact with the 

participation of the oxygen atom of the carboxylate group 

of the ligand (the H...O distances are 2. 23(6) and 2.57(4) 

Å, O...O 3.03(1) and 3.15(5) Å, ˂OHO 163.4(5)° and 

129.0(1)°)(Figure 2). In addition, the fluorine atom is in-

volved in the formation of a weak intermolecular hydro-

gen bond with the hydrogen atom of the cyclopentane 

fragment (C-H...F 2.47(3) Å, C...F 3.24(9) Å, 

˂CHF 136.7(5) °). Also, according to X-ray powder diffrac-

tion data, the homogeneity of this complex was confirmed 

(Figure S14). In case of Cu•6A, the structure was a binu-

clear complex in the form of a centrosymmetric dimer 

with bridging chlorides and a distorted square-pyramidal 

coordination of each copper ion (Figure 3). 

In the structure of Cu•6A complex, copper(II) ions are 

coordinated by two nitrogen atoms and an oxygen atom of 

the tridentate ligand and two chlorine atoms. The plane of 

the square pyramidal Cu-centers consist of two nitrogen at-

oms and an oxygen atom of the chelate carboxylate ligand 

and one chlorine atom, while the apex is occupied by an-

other chlorine atom, for which the Cu–Cl distance (Cu(1)–

Cl(1) = 2.82(6) Å) is much longer than the Cu–Cl distance 

at the base of the pyramid (Cu(1)–Cl(1) = 2.23(1) Å). Thus, 

as a result of the coordination interaction of the Cu2+ ion 

with the ligand, two five-membered chelate rings CuC2N2 

and CuC2NO are enclosed. In this case, the Cu–N(1), Cu–

N(2) and Cu–O(1) distances are equal to 1.93(8), 2.03(1) 

and 1.94(3) Å, respectively, and the N(1)–Cu(1)–N(2) and 

N(1)–Cu(1)–O(1) angles are 79.3(2)° and 81.4(0)°, respec-

tively. It should be noted that this geometry is not specific 

to copper(II) complexes of the studied bipyridyl ligands [9, 

11] and phenanthroline-substituted nitroxide radical [10].  

 
Scheme 1 Reagents and conditions: i) pentafluorobenzene, n-BuLi, from -78 °C to 0 °C; ii) DDQ, EtOAc, reflux; iii) 2,5-norbornadiene/1,2-

dichlorobenzene, reflux, 27 h; iv) NaOH / EtOH, rt, 12 h; v) CuCl2•2H2O / ethanol, 60 °C, 10 h. 
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Scheme 2 Reagents and conditions: i) ethanol, 78 °C, 10 h. 

 

 
Figure 1 View of the structure of Cu•6 depicted with 50% proba-
bility of displacement ellipsoids and showing the atomic labeling 

scheme (hydrogen atoms in organic ligands are not represented). 

Figure 2 Participation of methanol solvate molecule in the for-
mation of bifurcate intermolecular contact in the crystal of Cu•6. 

 

 
Figure 3 View of the structure of Cu•6A, depicted with 50% probability of displacement ellipsoids (hydrogen atoms in organic ligands 

are not represented). 

https://doi.org/10.15826/chimtech.2025.12.2.17


Chimica Techno Acta 2025, vol. 12(2), No. 12217 ARTICLE 

  

 6 of 10 DOI: 10.15826/chimtech.2025.12.2.17  

 
Figure 4 Packing of molecules in complex Cu•6A, view along the a (a) and c (b) axes. 

The supramolecular structure of the binuclear complex 

Cu•6A is shown in Figure 4. Herein, the crystal packing is 

formed mainly because of the interactions C(13)–H∙∙∙O(1), 

C(9)–H∙∙∙O(2) between the hydrogen atom of the fluoro-

phenyl substituent or the hydrogen atom corresponding to 

one of the pyridyl rings and the oxygen atoms of the car-

boxylate (Table 1).  

Besides, the packing of molecules into complex Cu•6A 

three-dimensional framework is created by hydrogen bond 

involving the hydrogen atom of the cyclopentane fragment 

and the fluorine atom C(20)–H(20B)∙∙∙F with a distance of 

2,45(4) Å. In this case, the lattice water molecule also could 

play an important role due to its tendency to be surrounded 

by the four nearest molecules of the binuclear complex and 

to form hydrogen bonds with them (see Table 1): its hydro-

gen atoms are oriented toward the O(1) and C(1) atoms, 

while its oxygen atom is oriented toward the hydrogen 

atom of one of the pyridyl rings. 

Copper(II) complexes of 4-phenyl-1-(2-pyridyl)cyclo-

penteno[c]pyridine-3-carboxylate (CCDC 664383) and 5-

phenacyl-6-phenyl-3-(2-pyridyl)-1,2,4-triazine (CCDC 

664386) were previously obtained and described [9]. In 

case of these complexes for the crystal packing of mole-

cules, the following are essential hydrogen bonds of the 

type CPh-H...Cl or C-H…N, whereas in the case of complex 

Cu•6A, the crystal structure and packaging in the crystal 

are influenced by the crystallization water molecule and 

fluorine atoms.  

The structure of Cu•5 consists of discrete mononuclear 

units having copper, unlike complex Cu•6A, in a distorted 

octahedral coordination as shown in Figure 5. 

In the case of the Cu•5 complex, copper(II) is hexacoor-

dinated and surrounded by four nitrogen atoms and two ox-

ygen atoms of the tridentate ligands. Thus, copper(II) cat-

ion is located in the center of a distorted octahedron; three 

nitrogen atoms and an oxygen of the chelating carboxylate 

ligands occupy the corners of a distorted square base with 

the distances N(1)…N(2) 2.61(7) Å, N(2)…N(3) 3.51(5) Å, 

N(3)…O(1) 2.83(2) Å and O(1)…N(1) 2.58(5) Å. The remain-

ing nitrogen atom and the oxygen atom of one of the ligands 

occupy the axial positions of the octahedron.  

Table 1 Geometric parameters of hydrogen bonds in the crystal of 

Cu•6A. 

D-H…A 
d(D-H), 

Å 

d(D-

H…A), Å 
<DHA, o 

d(D…A), 

Å 

C(13)–H…O(1) 0.93(1) 2.55(2) 163.3(2) 3.45(4) 

C(9)–H…O(2) 0.93(0) 2.59(5) 126.5(4) 3.23(6) 

C(20)–
H(20B)…F(1) 

0.97(0) 2.45(4) 117.8(7) 3.03(2) 

O(3)–

H(3B)…O(1) 
0.85(0) 2.14(7) 144.3(0) 2.88(1) 

O(3)–

H(3B)…C(1) 
0.85(0) 2.77(8) 150.8(0) 3.54(5) 

C(10)–

H(10)…O(3) 
0.93(1) 2.66(5) 116.9(0) 3.19(6) 

* Hydrogen bonds involving atoms of a solvate water molecule 
are marked with a gray background. 

 
Figure 5 View of the structure of Cu•5 depicted with 50% proba-

bility of displacement ellipsoids and showing the atomic labeling 

scheme (hydrogen atoms are not represented). 
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The axial Cu–N (Cu(1)–N(4) = 2.41(2) Å) and Cu–O 

(Cu(1)–O(2) = 2.15(9) Å) distances are much longer than the 

equatorial ones (Cu(1)–N(1) = 1.93(4) Å; Cu(1)– 

N(2) = 2.26(2) Å; Cu(1)–N(3) = 1.96(8) Å; Cu(1)– 

O(1) = 2.03(8) Å), due to the Jahn–Teller effect, which was 

noted for transition metal compounds and for the most 

studied copper(II) compounds [35]. The lengths of the Cu–

N bonds are consistent with the established patterns ob-

served in structurally related copper(II) complexes that uti-

lize bipyridyl ligands [11, 36]. 

The trans bond angles are N(1)–Cu(1)– 

N(3) = 170.9(7)°, O(1)–Cu(1)–N(2) = 157.8(2)° and O(2)–

Cu(1)–N(4) = 153.3(4)° , deviating from the ideal value of 

180°, indicating that the coordination geometry around 

copper is distorted octahedral. This distortion was shown 

to be typical of structurally related complexes of copper(II) 

with bipyridyl and phenanthroline ligands [36, 37], with 

the tetragonality parameter of 0.72 being calculated from 

the ratio of the average equatorial Cu–O/N bond lengths to 

the average axial Cu–O/N bond lengths (the average length 

of Cu–O/N equatorial bonds is 2.051 Å, while the average 

length of Cu–O/N axial bonds is 2.855 Å; their ratio is de-

termined by the expression: 2.051 Å/2.855 Å = 0.72) [38]. 

Meanwhile, a complex system of intermolecular hydrogen 

bonds creates the main supramolecular motif of the organ-

ization of Cu•5 crystals in the form of parallel stacks 

formed along the a axis (Figure 6).  

The oxygen atoms of the carboxyl group of one molecule 

of the Cu•5 complex interact with two neighboring mole-

cules via hydrogen bonds (Table 2), but one of these oxygen 

atoms formed a two-point heterosynthon C(26)–H…O(4), 

and the other ones forms a one-point heterosynthon  

C–H…O(1) (Figure 7). 

 
Figure 6 Packing of Cu•5 molecules in the form of a set of parallel 

stacks formed along the a axis. 

Table 2 Geometric parameters of hydrogen bonds in a Cu•5 crystal. 

D-H…A 
d(D-H), 

Å 

d(D-
H…A), 

Å 

<DHA, o 
d(D…A), 

Å 

C(26)–

H(26)…O(4) 
0.93(0) 2.25(6) 155.2(0) 3.12(5) 

C(8)–

H(8)…O(1) 
0.93(0) 2.54(9) 156.2(4) 3.42(1) 

C(5)–
H(5)…O(1) 

0.93(0) 2.46(1) 136.9(9) 3.20(5) 

 
Figure 7 View of various synthons surrounding the Cu•5 complex 

molecule. 

Besides, each of the perfluorophenyl substituents of the 

dipyridyl ligand participated in close intermolecular contacts 

with the adjacent aromatic ring, namely, the C…F interaction 

with a distance of 2.98(8) Å for the C6F5…C6F5 synthon and 

3.091 Å for the C6F5…C6H5 synthon. There are some π–π over-

lap between the corresponding aromatic systems, but the 

distance between the centroids (Dcent 5.26(2) Å for the 

C6F5…C6F5 synthon and Dcent 4.63(5) Å for the C6F5…C6H5 

synthon) is too large to be energetically significant [39]. The 

structural role of intermolecular interactions in aromatic and 

fluoroaromatic molecules, such as the aryl-perfluoroaryl 

stacking synthon (Ar–ArF, C–H…F, C–F…π, and F…F interac-

tions), was previously noted in a number of studies [40, 41]. 

4. Limitations 

The developed approach is primarily limited by the number 

of metals that were used in the synthesis of metal com-

plexes; when obtaining structures with other transition 

metals, one can expect the appearance of spatial features 

depending on the coordination number of the metal. More-

over, the utilization of different solvents, the ratio between 

salt and ligands, and temperature could affect the structure 

and other parameters of resulting complexes.  

5. Conclusions 

In summary, three novel Cu(II) complexes of (poly)fluo-

rine-containing 5-aryl-2,2’-bipyridine-6(6’)-carboxylic ac-

ids were obtained, the structures of which were studied by 

the XRD analysis. It was observed that the ligand containing 
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one fluorine atom is prone to the formation of a coordina-

tion copper compound with the coordination number of 

five. On the other hand, it was found that in case of the lig-

and containing a polyfluoroaromatic fragment, the triden-

tate copper complex with the coordination number of six 

are formed. Supramolecular structure of the resulting che-

lates was hypothesized to be due to the influence of fluorine 

atoms involved in the formation of hydrogen bonds (in case 

of complexes Cu•6 and Cu•6A) or intermolecular short con-

tacts of type C–F…π (in case of complex Cu•5), as well as 

the influence of the crystallization solvent molecules. The 

obtained data regarding the structure and properties of the 

developed coordination compounds could be used in the de-

sign of metal complexes and the study of the possibilities of 

their application as pharmacologically active compounds, 

chemosensors, and catalytic systems. 
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