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Abstract 
β-carotene, a prominent provitamin A carotenoid, functions both as an es-

sential antioxidant beneficial to human health and as a natural food colorant. 
Gac (Momordica cochinchinensis Spreng) fruit peel, often discarded as bio-

mass waste, represents a promising source of β-carotene. Extracting β-car-
otene from Gac peel can significantly enhance the value of this waste mate-
rial. In this study, a conventional solid-liquid method was employed to ex-

tract β-carotene from Gac peel. The influence of several factors, including 
solvent type, particle size, temperature, and solid-to-solvent ratio, on the 
extraction efficiency was investigated. The results indicated that smaller 

particle size significantly improved β-carotene extractability. Among ace-
tone, hexane, and ethyl acetate, ethyl acetate proved to be the most effective 

solvent for β-carotene extraction. At a solvent-to-material ratio of 10:1, the 
highest β-carotene recovery was attained after three consecutive extrac-
tions, with the first extraction accounting for 69.9% of the total recovery. A 

kinetic model incorporating the effects of driving force and degradation on 
the kinetics of β-carotene extraction was developed. The calculated activa-
tion energies for extraction and degradation were determined to be 9.15 and 

69.71 kJ/mol, respectively. This study demonstrates the potential of β-caro-
tene extraction from gac peel and provides valuable insights into the under-
lying kinetics. 
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Key findings 
● The influence of various factors, such as solvent type, particle size, temperature,

and solid-to-solvent ratio, on the extraction of β-carotene was investigated.

● Pseudo-first order and pseudo-second order kinetic models were found to be un-
suitable for describing β-carotene extraction because of the impact of β-carotene deg-

radation.

● A pseudo-homogeneous kinetic model incorporating a linear driving force was de-

veloped, yielding valuable kinetic parameters.
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1. Introduction

Gac (Momordica cochinchinensis Spreng) fruit peel, often 

discarded as waste, has been recognized as a valuable 

source of bioactive compounds and antioxidants, including 

β-carotene [1]. β-carotene, a vital nutrient for humans and 

primarily recognized as provitamin A, is associated with a 
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range of health benefits [2]. β-carotene's antioxidant prop-

erties and ability to enhance immune function contribute to 

disease prevention and overall well-being [3]. Hoe et al. [4] 

presented a scalable and inexpensive setup for the β-

carotene extraction. Given its significant level of β-carotene 

[5], gac peel is a promising feedstock for recovering this 

valuable compound. 

The scope of β-carotene extraction continues to expand, 

targeting various biological sources and their derived ma-

terials. Kanda et al. [6] successfully extracted β-carotene 

from the microalga Dunaliella salina using liquefied dime-

thyl ether. Gungor et al. [7] recovered β-carotene from 

pumpkin peel, achieving a hexane extractability of 125.75 

mg/100 g of a sample. Jayesree et al. employed a water-in-

duced hydrocolloidal complexation method to extract β-car-

otene from carrot peel, obtaining an efficiency of 

1.17 mg/100 g of the sample [8]. Chifomboti and Chim-

phango [9] utilized physical methods to extract lipophilic β-

carotene compounds from pumpkin peel; however, the raw 

extract contained oil and other constituents, necessitating 

a subsequent separation step. Recently, Hladnik et al. 

[10,11] extracted β-carotene from the yeast Rhodotorula 

glutinis using various solvents, with results indicating sig-

nificantly high extraction efficiency achieved with ethyl ac-

etate. Ludwig et al. [12] reported that the recovery of β-

carotene from Dunaliella salina using hexane as a solvent is 

less energy-intensive than using supercritical CO2 extrac-

tion methods. 
For β-carotene extraction, common solvents include ac-

etone, hexane, and ethyl acetate. Hagos et al. [13] demon-

strated the potential of an acetone solvent for extracting β-

carotene from pumpkin (Cucurbita maxima). Sun et al. [14] 

found that ethyl acetate can extract approximately 1.5 times 

more β-carotene from citrus peels than hexane. These find-

ings highlighted the crucial role of solvent selection in β-

carotene extraction from various plant materials. 

Various mathematical models, including pseudo-first 

order (PFO), pseudo-second order (PSO), diffusion, and 

Weibull models, were employed to study extraction kinetics 

[15–17]. Several authors developed kinetic models that ac-

count for degradation during extraction [18, 19]. While 

Subra et al. [20] and Döker et al. [21] developed kinetic 

models for β-carotene extraction, they did not consider its 

degradation. However, studies by Sun et al. [14] and 

Takahashi et al. [22] indicated that β-carotene can be de-

graded in organic solvents. In sunflower oil, the model of β-

carotene thermal degradation was developed by Kumar et al. 

[23]. The degradation of β-carotene needs to be considered 

in modeling the β-carotene extraction [24]. To the best of 

our knowledge, no published kinetic models for batch β-

carotene extraction have yet incorporated degradation. 

 In this study, β-carotene was recovered from gac peel 

using a conventional solid-liquid extraction method. The in-

fluence of various factors on the extraction process, includ-

ing solvent type (acetone, hexane, and ethyl acetate), liq-

uid-to-solid ratio (3:1, 5:1, 10:1, 15:1, 20:1, and 30:1 mL/g), 

temperature (303, 331, and 340 K), and particle size 

(0.083±0.028, 0.169±0.016, and 2.031±0.113 mm), was in-

vestigated. A kinetic model incorporating degradation and 

driving force was developed to gain insights into the ther-

modynamic properties of the extraction process. 

2. Experimental 

2.1. Material, chemicals, and apparatus  

Twenty fresh ripe gac fruits were collected from a local 

market, yielding a total wet peel weight of 25 kg. 

Hexane (99.6% w/w), acetone (99.5% w/w), and ethyl 

acetate (99.7% w/w) were supplied by Xilong Scientific Co. 

Ltd (China). Standard β-carotene (96% w/w) was pur-

chased from Shanghai Macklin Biochemical Co. Ltd. 

UV-Vis spectra were recorded in a range of 200–800 nm 

using an Evolution 350 spectrometer (ThermoFisher Scien-

tific, USA). 

Computrac MAX 5000XL was operated at 105 °C for de-

terming moisture content of the material (according to the 

AOCS Ca 2c-25 method). 

2.2. Preparation of raw material 

Gac fruits were washed with tap water and then halved. The 

peels were cut into pieces with dimensions of 1×1×5 cm 

(width × height × length). The peels were dried at 373 K 

until the moisture content reached 10–15%. Dried peels 

were crushed into small particles, mixed thoroughly, and 

sieved into different size ranges using 0.15, 1, and 2.38 mm 

sieves. The particles were stored in closed glass containers 

at room temperature. 

Raw samples were photographed using a Rievbcau digital 

microscope with HiView software. ImageJ software was used 

to analyze particle size distribution based on these photos. 

2.3. Batch extraction 

Batch extraction of β-carotene from gac peel was performed 

in a three-necked round-bottom flask (500 mL) containing 

300 mL of solvent with a condenser. The mixture was 

stirred, and temperature was monitored using a glass alco-

hol thermometer. The effects of particle sizes, solvents (ac-

etone, hexane, and ethyl acetate), solvent-to-material ra-

tios (3:1, 5:1, 10:1, 15:1, 20:1, 30:1 mL g−1), and tempera-

tures (303, 331, and 340 K) were investigated. At predeter-

mined intervals (5, 10, 15, 20, 30, 40, and 60 min), 2 mL of 

sample was withdrawn, quickly filtered, diluted, and ana-

lyzed for β-carotene concentration. The experiments were 

conducted three times for each condition and performed 

under atmospheric pressure (1 atm). 

2.4. Analysis of β-carotene concentration 

Stock β-carotene solutions (500 mg L−1) were prepared by 

dissolving 52.1 mg of standard β-carotene (96% w/w) in 

100 mL of different solvents. These stock solutions were 

subsequently diluted with the corresponding solvents to 

create working solutions with β-carotene concentrations at 
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0.5, 1, 1.5, 2, 2.5, 3, 4, and 5 mg L−1. The absorbance of these 

working solutions at 450 nm was determined to generate 

calibration curves. 

2.5. Determination of β-carotene content in material 

The content of β-carotene in the material was determined 

following the protocol established by Biswas et al. [25]. The 

dried peel was ground using a mortar and pestle, subse-

quently sieved through a 0.075-mm mesh to obtain a fine 

powder. One gram of the resulting powder was placed in a 

50-mL Erlenmeyer flask with a stopper, where it was mixed 

with 10 mL of ethyl acetate under dark conditions. The mix-

ture was magnetically stirred for 30 min before being 

transferred to a 50-mL polypropylene screw-cap tube for 

centrifugation at 4,000 rpm for 1 min. The supernatant was 

then decanted into a 500-mL volumetric flask, while the re-

maining solid was returned to the Erlenmeyer flask and ex-

tracted repeatedly until the extract became colorless. Ethyl 

acetate was added to the volumetric flask to reach the cali-

bration mark. The final solution's absorbance was meas-

ured at 450 nm to calculate the concentration of β-carotene 

following the calibration curve as presented in Section 3.1. 

All measurements for determining β-carotene content in 

the material were performed in triplicate. 

3. Results and Discussion 

3.1. UV-Vis spectra of β-carotene in different 

solvents 

β-carotene's delocalized π-electrons interact with solvents 

to varying degrees, influencing absorption peak intensities 

[26]. Figure 1a shows the UV-Vis spectra ranging from 350 

to 650 nm of standard β-carotene in acetone, ethyl acetate, 

and hexane at 5 mg L−1. All spectra exhibit a similar charac-

teristic shape with three distinct visible peaks, likely due to 

the transition of electronic states in double bonds of β-car-

otene's structure [27]. This results in strong absorption at 

424, 453, and 481 nm, as reported in previous findings [28]. 

The shape and peak positions of the UV-Vis spectrum are 

critical indicators of β-carotene's presence in the extracts. 

UV-Vis spectroscopy is a valuable technique for β-caro-

tene determination due to its simplicity, ease of use, and 

affordability [29, 30]. As shown in Figure 1a, the most sub-

stantial peaks in UV-Vis spectra appear at 450 nm. Conse-

quently, the absorbance at this wavelength was used to con-

struct the calibration curves, represented by Equations (i)-

(iii) in Table S1. These equations depict the linear relation-

ships between peak intensity and β-carotene concentration 

(0.5–5 mg L−1) observed in acetone, hexane, and ethyl ace-

tate (Figure 1b) with the closeness of R2 to 1. 

The absorbance intensity of β-carotene varies with the 

solvent, as indicated by its molar absorptivity. Carft's study 

[31] revealed that the molar absorptivity of β-carotene fol-

lows the order of hexane > acetone > ethyl acetate, leading 

the peak height at 450 nm to follow this trend. The results 

presented in Figure 1a align well with this observation. 

The UV-Vis spectra of extracts from gac peel extraction 

using acetone, hexane, and ethyl acetate solvents, as de-

picted in Figure S1, closely resemble the UV-Vis spectra of 

standard β-carotene solutions (Figure 1a). This result 

demonstrates that UV-Vis spectroscopy can effectively 

identify and quantify β-carotene from gac peel extracts. 

3.2. Study on β-carotene extraction 

3.2.1. Effect of particle size 

Particle size significantly influences β-carotene extraction 

from gac peel. Figure S2 illustrates the particle size distri-

bution curves for three size ranges: 1–2.5 mm, 0.15–1 mm, 

and <0.15 mm. The average particle sizes were determined 

to be 0.083±0.028, 0.169±0.016, and 2.031±0.113 mm, re-

spectively. A smaller particle size increases the interfacial 

area and enhances solvent penetration into the gac peel ma-

trix, thereby enhancing extraction yield [32]. 
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Figure 1 Effect of different solvents on a) UV-Vis spectra and b) 

calibration curves of β-carotene. 
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To evaluate the impact of particle size on β-carotene ex-

traction, experiments were conducted using acetone at a 

solvent-to-material ratio of 5:1 and a temperature of 303 K. 

Smaller particles offer a larger surface area and a shorter 

diffusion path for the solvent, facilitating β-carotene ex-

traction compared to larger particles [14, 32]. As illustrated 

in Figure 2, β-carotene concentration in the extract in-

creases with decreasing particle size. Particles in the 1-2.5 

mm range yielded β-carotene concentrations approximately 

2 times lower than those in smaller particle sizes. This 

trend aligns with previous research findings [14, 33]. Con-

sequently, particles smaller than 0.15 mm were used in sub-

sequent experiments. 

3.2.2. Effect of solvents 

Acetone, hexane, and ethyl acetate were used to extract β-

carotene from gac peels within 60 minutes at 303 K with a 

solvent-to-material ratio of 5:1. As illustrated in Figure 3, 

β-carotene concentration in ethyl acetate extract was sig-

nificantly higher than with acetone or hexane, consistent 

with previous research [14, 34]. While polarity is a crucial 

factor in understanding solvent-β-carotene interactions 

[35], its precise role in this study remains unclear. Although 

hexane, a non-polar solvent, generally offers better solubil-

ity for β-carotene than ethyl acetate or acetone [31], it may 

not interact effectively with β-carotene's structure, result-

ing in lower β-carotene extractability. Conversely, ethyl ac-

etate and acetone molecules contain carboxyl (–COOH) and 

carbonyl (–C=O) groups, respectively, which can form hy-

drogen bonds with –CH groups in β-carotene molecule [36], 

facilitating β-carotene extraction from the gac peel matrix. 

With two electronegative oxygen atoms, ethyl acetate is 

likely to exhibit stronger interactions with β-carotene com-

pared to acetone. Additionally, β-carotene exhibits higher 

solubility in ethyl acetate than in acetone. The synergistic 

advantage of ethyl acetate for β-carotene extraction makes 

it the preferred solvent for future experiments. 

3.2.3. Effect of solvent-to-material ratio 

The solvent-to-material ratio is a crucial factor in β-caro-

tene extraction from gac peel. To maximize β-carotene re-

covery, the raw material was subjected to three consecutive 

extractions at the desired solvent-to-material ratios at a 

temperature of 303 K over 60 minutes. The extracted 

amounts and concentrations of β-carotene at various sol-

vent-to-material ratios and extraction times are presented 

in Figure 4. 

As shown in Figure 4a, the extracted mass of β-carotene 

per gram of used material gradually decreased with in-

creasing extraction cycles at each solvent-to-material ratio. 

This is attributed to the reduced amount of extractable β-

carotene in the material over-extraction time. For the first 

extraction, the extracted β-carotene increased with in-

creasing solvent-to-material ratio from 3:1 to 10:1, reaching 

a plateau at ratios beyond 15:1. Although a higher solvent 

volume increases the extraction driving force, the extracta-

ble β-carotene remains finite [37, 38]. For the second and 

third extractions, β-carotene yield showed minimal fluctu-

ation. This trend differs from previous observations for β-

carotene extraction from wet Tetradesmus obliquus using 

methanol [39], where the biomass was hydrated in the first 

extraction, causing a positive effect for β-carotene extrac-

tion as contacting pure solvent in the second extraction. 

As depicted in Figure 4b, a 10:1 ratio achieved the high-

est β-carotene yield from gac peel. Consequently, this ratio 

was adopted for subsequent extraction runs, yielding a total 

of 1.56 g of β-carotene obtained after three times of extrac-

tion. With β-carotene content in material determined to be 

1.72  0.03 mg/g, this result corresponds to a recovery effi-

ciency of approximately 92.1%. The first extraction ac-

counted for approximately 69.9% in three times of extrac-

tion. While using equivalent amounts of solvent, the second 

and third extractions yielded negligible amounts of β-caro-

tene, leading to increased solvent utilization. 

 
Figure 2 Effect of particle size on the β-carotene concentration in 

extracts. 

 
Figure 3 Effect of solvent on the β-carotene concentation in ex-

tracts. 
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Figure 4 Effects of different solvents on a) β-carotene yield, b) 

relative extracted β-carotene over three consecutive extractions. 

3.3. Study on kinetic and thermodynamics of β-

carotene extraction 

3.3.1. Notes on β-carotene extraction 

Stefanovich and Krel [40] reported that β-carotene is sus-

ceptible to degradation over time. Our study confirmed this 

observation through a straightforward experiment. Five 

glass screw-cap tubes containing 10 mL of a β-carotene so-

lution in ethyl acetate at an initial concentration of 40 mg/L 

were purged with nitrogen gas for 5 min to remove oxygen 

and then were stored at 303 K. At 1-hour intervals, one tube 

was sampled to measure the remaining concentration of β-

carotene. This protocol was again performed for a storage 

temperature of 333 K. 

As presented in Figure S3, β-carotene degradation accel-

erates at higher temperatures. Consequently, the degrada-

tion of β-carotene must be considered in the kinetic analysis 

of β-carotene extraction, leading to three distinct stages: 

• Initial stage: the extraction rate exceeds the degra-

dation rate, increasing the β-carotene concentration in the 

extract. 

• Intermediate stage: the degradation rate surpasses 

the extraction rate, causing a decrease in β-carotene con-

centration in the extract. 

• Equilibrium stage: the extraction rate equals the 

degradation rate, resulting in a maximum β-carotene con-

centration in the extract. 

Previous studies successfully employed pseudo-first or-

der (PFO) and pseudo-second order (PSO) models to de-

scribe the kinetics of extraction processes [15, 41]. How-

ever, these models assume a direct correlation between ex-

traction rate and driving force, limiting their accuracy to rep-

resent the maximum concentration observed in this study 

(Appendix S1, S2). To address this limitation, a novel kinetic 

model tailored for β-carotene extraction is required to pro-

vide a more comprehensive understanding of the process. 

3.3.2. Proposal of a new kinetic model 

A general equation for the time-dependence of β-carotene 

in extract follows Equation 1: 

= −
e d

dC
r r

dt
, (1) 

where re and rd represent the extraction rate and degrada-

tion rate, respectively. Based on the chemical reaction rate 

law, rd = kdC, Equation 1 can be expressed as follows: 

= −
e d

dC
r k C

dt
, (2) 

where kd represents the degradation rate constant. 

A pseudo-homogeneous kinetic model incorporating lin-

ear driving force (PHK-LDF) was employed to investigate 

the influence of solvent on β-carotene extractability. In this 

approach, the extraction rate is assumed following the rate 

law of a chemical reaction, which is given by Equation 3: 

= − =s
e e s

dC
r k C h

dt
, (3) 

where h represents the driving force for β-carotene extrac-

tion, which is assumed to be the difference between the 

equilibrium concentration of β-carotene in the solvent (Ceq) 

and its concentration at time t (C), h = Ceq – C, ke is the 

extraction rate constant, and Cs represents the apparent 

concentration of β-carotene. Equation 3, incorporating this 

driving force, is presented as Equation 4:  

( )= − −s
e s eq

dC
k C C C

dt
. (4) 

Therefore, Equation 2 can be rewritten as Equation 5: 

( )= − − −
e s eq d

dC
k C C C k C

dt
. (5) 

The system of Equations 4 and 5 can be numerically 

solved using a fourth-order Runge-Kutta method with ini-

tial conditions (t = 0) as presented by Equation 6: 
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( )
( )

 =


=

s s,max
0

0 0

C C

C
, (6) 

where Cs,max  corresponds to the maximum apparent con-

centration, representing the total β-carotene content per 

volume of solvent. 

3.3.3. Validation of the proposed kinetic model 

To validate the PHK-LDF model, experimental data from β-

carotene extractions at different temperatures (303, 331, 

and 340 K) using ethyl acetate at a solvent-to-material ratio 

of 10:1 was regressed against the model. As shown in Table 

S2, the PHK-LDF model fits the experimental data well, with 

high R² values at each temperature. Both the extraction rate 

constant (ke) and the degradation rate constant (kd) in-

crease with temperature, and ke consistently exceeds kd. 

Figure 5a illustrates the experimental data points along 

with the corresponding fitting curves generated by the 

PHK-LDF model. 

The activation energies (Ea) for β-carotene extraction 

and degradation were determined using Arrhenius's law. A 

linear relationship between lnk and 1000/T (Figure 5b) 

provided the slope, proportional to −Ea/Rg
 (Rg is the ideal 

gas constant) [42]. The calculated Ea for degradation 

(69.71 kJ mol−1) was 7.6 times higher than that for extrac-

tion (9.15 kJ mol−1). This result demonstrates that while 

both extraction and degradation rates become faster at 

higher temperatures, degradation is far more temperature-

sensitive than extraction, explaining why the β-carotene 

concentration in the extracts at 331 and 340 K differs only 

slightly (Figure 5a). 

4. Limitations 

We have not yet addressed solvent recovery or the subse-

quent purification of the extracted β-carotene. Future work 

should explore methods for solvent recycling and refining 

the extract to obtain high-purity β-carotene. Furthermore, 

evaluating the biochemical composition of the final extract 

in more detail, as well as exploring integrated evaporation 

of by-products, could also help overcome current limita-

tions. 

5. Conclusions 

In this study, β-carotene was successfully recovered from 

gac peel using a conventional solid-liquid extraction 

method. The effects of various factors, namely solvents 

(hexane, acetone, and ethyl acetate), particle size, solvent-

to-material ratio, and temperature, was investigated. The 

results showed that β-carotene extractability is strongly in-

fluenced by solvent choice, following the order of ethyl ac-

etate > acetone > hexane. Within the tested particle size 

range, smaller particles yielded higher extraction effi-

ciency. The highest total β-carotene mass was achieved at a 

ratio of solvent volume to material of 10:1 (mL g−1). Approx-

imately 70% of the total β-carotene was extracted during 

the first of three consecutive extraction cycles. Kinetic anal-

ysis revealed that the PFO and PSO models were inadequate 

for describing β-carotene extraction from gac peel, likely 

due to β-carotene's thermo-degradable nature. A PHK-LDF 

model, incorporating degradation and driving force, was 

developed and fitted well to the experimental results. The 

activation energy for degradation (69.71 kJ mol−1) was sig-

nificantly higher than for extraction (9.15 kJ mol−1), con-

firming the temperature-sensitivity of the β-carotene deg-

radation. This study provides valuable kinetic and thermo-

dynamic insights, supporting future industrial-scale appli-

cations where the solvent can be fully recovered and re-

used. 

 

 
Figure 5 Variation of β-carotene concentration in extract again 

time at different temperatures (Experimental result: discrete 

points, simulation: solid curve) (a), plots of lnk and 1000/T (b). 
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