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Abstract 

This study aims to characterize the properties of the ternary molybdate 
Rb5(Ag1/3Hf5/3)(MoO4)6, which was previously identified during phase equi-
librium investigations in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system. A ter-

nary molybdate Rb5(Ag1/3Hf5/3)(MoO4)6 was obtained through a solid-state 
reaction. It was found that the compound crystallizes in the trigonal space 
group R3̅c and melts at 596 °C with decomposition. Its structure was refined 

using the Rietveld method. The crystal structure consists of a mixed frame-
work composed of isolated (Ag/Hf)O6 octahedra and MoO4 tetrahedra, inter-

connected through shared oxygen vertices. Large voids within the frame-
work accommodate two types of rubidium atoms. Using the powder XRD data 
recorded over 30–400 °C, the principal components of the thermal expansion 

tensor were determined. Rb5(Ag1/3Hf5/3)(MoO4)6 can be classified as a material 
with high thermal expansion coefficient (αV = 36.7∙10–6 °С–1 at 400 °C). At el-
evated temperatures, the compound exhibited significant ionic conductivity, 

reaching 1.7∙10−3 S/cm at 480 °C with an activation energy Еа = 0.8 eV with 
oxygen ions as the probable charge carriers. Energy barriers for one-, two-, 
and three-dimensional transport in the compound were theoretically evalu-

ated using the softBV program and bond valence sum maps (BVS). 
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Key findings 

● Rb5(Ag1/3Hf5/3)(MoO4)6 was successfully synthesized, and its structural 

properties were characterized using powder X-ray diffraction techniques. 

● The compound can be classified as a material with high thermal expansion. 

● The compound exhibited high ionic conductivity of 1.7∙10⁻³ S/cm at 480 °C. 

© 2024, the Authors. This article is published in open access under the terms and conditions of the 

Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

The search for new functional materials remains an im-

portant task of modern materials science. Compounds 

based on double and triple molybdates are promising for 

the preparation of functional materials. Molybdates, en-

compassing a vast array of compounds with diverse com-

positions and structures, have emerged as a significant 

class of functional materials due to their remarkable and 

tunable physicochemical properties. Their versatility 

stems from the ability to incorporate various metal cati-

ons into the molybdate framework, leading to a wide 

range of functionalities. For example, high oxygen conduc-

tivity was reported for molybdates with fluorite [1–8], 

perovskite [9–14], and La₂Mo₂O₉ [15–18] structures. Fur-

thermore, some oxygen-conducting complex molybdenum 

oxides also exhibit proton conductivity [4, 8, 19], broad-

ening their potential applications. Current research fo-

cuses extensively on complex molybdates with diverse 

compositions to identify materials exhibiting desirable 

physicochemical properties, including high ionic conduc-

tivity [20–25], negative thermal expansion [26–28], cata-

lytic activity [29, 30], luminescence [31], and microwave 

dielectric properties [31]. The development of numerous 

new functional materials relies on ongoing research into 

the physicochemical properties of new compounds. The 

synthesis and characterization of new compounds contrib-

ute significantly to our understanding of fundamental 
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chemical and physical principles, which is necessary for 

functional materials creation. 

The study of ternary molybdate systems Rb₂MoO₄–

AMoO₄–R(MoO₄)₂, (where A represents divalent metals 

and R represents Zr or Hf), yielded new triple molybdates 

Rb5А0.5R1.5(MoO4)6. Moreover, they crystallize in two 

structural types: R3c [32] with an ionic radii of a divalent 

metal less than 1 Å (Ni, Mg, Cu, Zn, Co, Mn, Cd) and R3̅ 

[33] (Ca, Sr, Ba, Pb). Further investigation is needed to 

fully elucidate their crystal structures and cation order-

ing. In addition, the compound’s properties are signifi-

cantly influenced by the distribution of atoms within the 

crystal lattice. 

The object of this study is a triple molybdate 

Rb₅(Ag₁/₃Hf₅/₃)(MoO₄)₆ which were reported for the first time 

in the study of the Ag₂MoO₄–Rb₂MoO₄–Hf(MoO₄)₂ system [34]. 

In [34], the authors determined the unit cell parameters using 

Le Bail fitting and the melting point using differential scanning 

calorimetry.  

The goal of this work is to study the triple molybdate 

Rb5(Ag1/3Hf5/3)(MoO4)6 in terms of the crystal structure 

based on Rietveld refinement with the attention to atoms 

distribution within the crystal lattice, thermal behavior, 

and ionic conductivity. 

2. Experimental 

Commercially available reagents were used as starting ma-

terials for the synthesis: Rb2CO3 (high purity), HfO2 (chem-

ically pure), AgNO3 (analytical grade), and MoO3 (analytical 

grade). The ternary molybdate Rb5(Ag1/3Hf5/3)(MoO4)6 was 

synthesized from a stoichiometric mixture of Ag2МоО4, 

Rb2MoO4, and Hf(MoO4)2. These molybdates were obtained 

by solid state reactions from stoichiometric mixtures of the 

respective reagents. Stepwise annealing of the samples was 

performed in a muffle furnace. During annealing, the sam-

ples were repeatedly ground with the addition of ethyl al-

cohol. Silver molybdate was synthesized at temperatures of 

200–450 С for 150 h. Rubidium molybdate was synthe-

sized at 400–550 °С, while hafnium molybdate was synthe-

sized at 400–750 °С, with both processes lasting 80–100 h.  

X-ray diffraction analysis (XRD) was performed using a 

Bruker D8 Advance automated powder diffractometer 

(VANTEC detector, Cu Kα radiation, λ = 1.5418 Å, Bragg-

Brentano geometry). XRD data were collected at 296 K in 

the range 2θ = 7–100° in steps of 0.02076°. The ICDD PDF-

2 database was used for diffractogram analysis. 

Rietveld refinement was conducted using the TOPAS 4.2 

software [35, 36]. 

The surface morphology and analysis of chemical com-

position were examined by SEM microscopy at room tem-

perature using a Hitachi SEM TM-1000 with detector TM-

1000 TDS. 

High-temperature powder X-ray diffraction (HT-PXRD) 

was also employed to characterize the ternary molybdate. 

Measurements were conducted using the abovementioned 

diffractometer with an Anton Paar HTK16 high-tempera-

ture chamber over a temperature range of 30–500 °С in 

steps of 50 °С. Finely ground sample was applied to a plat-

inum sample holder using a hexane suspension. An external 

Si standard was used to control the 2θ correction prior to 

the measurements. Lattice parameters were calculated us-

ing the Topas 4.2 software package, while visualization and 

calculation of the thermal expansion tensor were conducted 

with the TTT software package [37]. The temperature de-

pendence of the lattice parameters was approximated using 

a straight line. Based on the obtained data, the principal 

values of the thermal expansion tensor were calculated, and 

cross sections of the thermal expansion coefficient were 

plotted. 

Theoretical estimation of the activation energy and ion 

transport pathways in the ternary molybdate was per-

formed using the softBV program [38] with bond valence 

sum maps (BVS). 

An STA 449 F1 Jupiter thermal analyser (NETZSCH) was 

used for thermogravimetric (TG) and differential scanning 

calorimetric (DSC) characterization of the title compound. 

The thermal analysis was carried out in the temperature 

range of 25–650 °C in argon flow at a rate of 10 °C/min, 

using platinum crucible. The use of Pt–PtRh thermocouple 

increased the accuracy of temperature measurement to ±1°. 

Electrical conductivity measurements were conducted 

over a temperature range of 200–480 °С using a Z-1500J 

impedance meter in both heating and cooling modes 

(2 °C/min) across a frequency range of 1 Hz–1 MHz. To in-

vestigate the ion-conducting properties of 

Rb5(Ag1/3Hf5/3)(MoO4)6, its ceramic samples in the form of 

disk-shaped pellets (d = 10 mm, h = 1.7 mm) were prepared 

by pressing the powder at 1 kbar and sintering at 500 °C for 

4 h. Electrodes were applied to the pellets surfaces by firing 

colloidal platinum for 1 h. 

3. Results and Discussion 

3.1. Synthesis of Rb5(Ag1/3Hf5/3)(MoO4)6  

The sequences of chemical transformations occurring during 

the formation of Rb5(Ag1/3Hf5/3)(MoO4)6 were established. 

Three-component stoichiometric mixture of Ag2MoO4, 

Rb2MoO4, and Hf(MoO4)2 was annealed over a temperature 

range of 290–500 °С in increments of 30 °С. X-ray diffraction 

patterns obtained at intermediate stages of calcination, show-

ing the transformations of phases, are given in the Figure S1. 

The reaction sequence, as determined by powder XRD analy-

sis, is illustrated in the following scheme: 
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Based on these results, the pure triple molybdate was 

synthesized by annealing at 450-500 °С for 60 h. 

SEM micrograph of the synthesized powder shows ag-

gregation of particles up to 20 µm in size with a flaky sur-

face (Figure S2). 

3.2. Rietveld refinement and structure of 

Rb5(Ag1/3Hf5/3)(MoO4)6 

All XRD peaks of Rb5(Ag1/3Hf5/3)(MoO4)6 could be indexed in 

a trigonal unit cell (space group R3̅c), with initial lattice pa-

rameters and atomic positions closely matching those of 

Rb5Co0.5Hf1.5(MoO4)6 [39], which served as the starting 

model for Rietveld refinement. Silver and hafnium ions were 

positioned in two crystallographic sites, Co1/Hf1 and 

Co2/Hf2, and their occupancies were refined. A Pearson VII 

function was used to describe peak shapes. Refinement was 

performed by gradually introducing parameters with simul-

taneous graphical modeling of the background. To reduce the 

number of refined parameters, isotropic displacement param-

eters (Biso) for the O atoms were assumed to be equivalent. 

The refinement was stable with low residual R-factors. 

The refinement results for Rb5(Ag1/3Hf5/3)(MoO4)6 are pre-

sented in Table 1, key interatomic distances in Table S1, and 

atomic coordinates and isotropic displacement parameters 

in Table S2, while the calculated and experimental XRD pat-

terns with the difference curve are shown in Figure 1.  

The crystallographic data for Rb5(Ag1/3Hf5/3)(MoO4)6 

were deposited at the Cambridge Crystallographic Data Cen-

tre (deposition number CSD 2388190) and are available on 

the website www.ccdc.cam.ac.uk/data_request/cif. 

The crystal structure consists of a mixed framework 

composed of isolated (Ag/Hf)O6 octahedra and MoO4 tetra-

hedra, interconnected through shared oxygen vertices. 

Large voids within the framework accommodate two types 

of rubidium atoms (Figure 2). The Rb1 atom exhibits a nine-

coordinate oxygen environment, with Rb–O bond distances 

spanning from 2.84(1) to 3.25(1) Å. The second rubidium 

atom (Rb2) is coordinated to 12 oxygen atoms, forming a 

cuboctahedral environment. The Rb–O bond lengths in this 

coordination vary from 2.99(1) to 3.52(1) Å.  

Table 1 Main parameters of processing and refinement of the 

Rb5(Ag1/3Hf5/3)(MoO4)6 sample. 

Compound Rb5(Ag1/3Hf5/3)(MoO4)6 

Sp.Gr. trigonal, R3̅𝑐 

a, Å 10.70994 (6) 

c, Å 38.5395 (5) 

V, Å3 3828.35 (7) 

Z 6 

2θ-interval, º 8–100 

Rwp, % 4.77 

Rp, % 3.78 

Rexp, % 2.15 

χ2 2.22 

RB, % 2.24 

Both (Ag/Hf)O6 octahedra are primarily occupied by 

hafnium with a minor silver content. (Ag1/Hf1)O6 exhibits 

an Ag/Hf ratio of 0.21(1)/0.79(1) and an Ag/Hf–O distance 

of 2.12(1) Å. In contrast, (Ag2/Hf2)O6 has approximately 

half the silver content, with an Ag/Hf ratio of 

0.123(12)/0.877(12) and an Ag/Hf–O distance of 2.20(1) Å. 

The site occupancies can be compared to those reported for 

the similar triple molybdates Rb5Co0.5Hf1.5(MoO4)6 [39] and 

K5ScHf(MoO4)6 [40]. The distribution of Co2+ equals M1 – 

Hf0.85(1)/Co0.15(1), M2 – Hf0.66(2)/Co0.34(2) in 

Rb5Co0.5Hf1.5(MoO4)6 [39] and Sc3+ – M1 –

Hf0.548(4)/Sc0.452(4), M2 – Hf0.452(4)/Sc0.548(4) in 

K5ScHf(MoO4)6 [40]. As seen, a general trend emerges: as 

cation charge increases, so does its overall concentration. 

In addition, Co2+ ions show a stronger preference for the 

Hf2 site (Wyckoff position 6a, point group 32) compared to 

Ag+. Sc3+ ions display a more uniform distribution across 

both sites; however, the larger cation still exhibits a slight 

preference for the Hf2 site, with approximately 20% higher 

occupancy compared to the Hf1 site. 

3.3. Thermal behavior 

Thermal behavior of Rb5(Ag1/3Hf5/3)(MoO4)6 in situ was in-

vestigated using simultaneous thermal analysis (DSC and 

TG) (Figure 3) and high-temperature powder X-ray diffrac-

tion (HT-РXRD). Simultaneous thermal analysis (DSC and 

TG) was used to study Rb5(Ag1/3Hf5/3)(MoO4)6 over a tem-

perature range from room temperature to 650 °C. No mass 

change was recorded throughout the temperature range. 

Incongruent melting of the compound was observed at 

596 °С that is in agreement with [34]. X-ray diffraction 

(XRD) analysis of the residue after melting of the title com-

pound revealed Rb₈Hf(MoO₄)₆ as the dominant phase. 

The unit cell parameters of Rb5(Ag1/3Hf5/3)(MoO4)6 were 

determined using high-temperature powder X-ray diffrac-

tion (HT-РXRD) between 30 and 400 °C. Figure 4 and Table 

S3 present the temperature-dependent behavior of the a, c, 

and V parameters, all of which exhibit a linear increase with 

temperature. The coefficients of thermal expansion (CTE) 

were calculated from these data using linear fits (Table S4) 

and are summarized in Table S5.  

 
Figure 1 Difference Rietveld plot of Rb5(Ag1/3Hf5/3)(MoO4)6. 
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Figure 2 Crystal structure of Rb5(Ag1/3Hf5/3)(MoO4)6. 

Figure 5 compares the cross-section of the thermal ex-

pansion tensor with the projection of the crystal structure 

onto the ac plane. 

The CTE values, αa and αc, remain relatively constant 

throughout the investigated temperature range, with values 

of 11.2∙10–6 °С–1 and 14.3∙10–6 °С–1, respectively (Table S5). 

At 400 °C, the volumetric thermal expansion coefficient 

(αV) of Rb5(Ag1/3Hf5/3)(MoO4)6 is 36.7∙10–6 °С–1. Based on its 

αV value, Rb5(Ag1/3Hf5/3)(MoO4)6 can be classified as a ma-

terial with high thermal expansion [41]. The αV of 

Rb5(Ag1/3Hf5/3)(MoO4)6 is comparable to that of 

K5Mn0.5Zr1.5(MoO4)6 [42] but approximately 30% lower 

than K5Pb0.5Zr1.5(MoO4)6 [43]. Rb5(Ag1/3Hf5/3)(MoO4)6 

demonstrates a weak anisotropy with an αmax/αmin ratio of 

approximately 1.3 across the entire temperature range (Ta-

ble S5). Among the studied similar structure analogs, 

Rb5(Ag1/3Hf5/3)(MoO4)6 exhibits the lowest degree of ther-

mal expansion anisotropy (Table 2). 

Table 2 Unit cell parameters and CTLR for Rb5(Ag1/3Hf5/3)(MoO4)6 

and closely related structural analogues. 

 

Rb5(Ag1/3Hf5/3) 

(MoO4)6 
(this work) 

K5Mn0.5Zr1.5 

(MoO4)6 
[41] 

K5Pb0.5Zr1.5 

(MoO4)6 
[42] 

trigonal R3̅𝑐 R3с R3̅ 

a, Å 10.70994 (6) 10.6026(1) 10.6604 (2) 

c, Å 38.5395 (5) 37.6253(5) 37.9769 (9) 

V, Å3 3828.35 (7) 3663.0(1) 3737.6 (2) 

αa
 a 11.3(2) 10.9(2) 11.3(1) 

αc
 a 14.7(6) 20(1) 33(1) 

αV 
a 37.3(1) 41.7(1) 55.7(1) 

αmax/αmin 1.3 1.8 2.9 

a ∙10–6 °С–1 at 400 °С 

 

 
Figure 3 DSC and TG heating curve of Rb5(Ag1/3Hf5/3)(MoO4)6. 

 
Figure 4 The temperature dependences of the unit cell parame-

ters of Rb5(Ag1/3Hf5/3)(MoO4)6. 

 
Figure 5 Projection of the crystal structure of 

Rb5(Ag1/3Hf5/3)(MoO4)6 on the bc plane in comparison with the cross 
sections of the thermal expansion tensor. The “quasi” 2D (two-di-

mensional) layers are highlighted by dotted lines. 
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The thermal expansion behavior of 

Rb5(Ag1/3Hf5/3)(MoO4)6 can be understood within the frame-

work of the "rigid unit mode" (RUM) concept, which was 

applied to framework materials [44]. This model considers 

the interaction between rigid HfO6 octahedra, MoO4 tetra-

hedra, and relatively flexible AgO6 octahedra (Figure 5). 

The thermal expansion in the ab plane is primarily driven 

by the deformation of Ag1–O bonds as temperature in-

creases. The weak anisotropy and expansion along the c di-

rection can be attributed to the presence of fewer deforma-

ble Ag2–O bonds in the interlayer space and the complete 

absence of "hard" Mo–O bonds in this region. 

3.4. Electrical conductivity 

Impedance plots for Rb5(Ag1/3Hf5/3)(MoO4)6 were con-

structed based on the measurement data, (Figure 6). At low 

temperatures, these plots displayed a semicircle shape 

(e.g., Figure 6, 200 °С) starting from the origin, while at 

higher temperatures (e.g., Figure 6, 300 °С), they showed 

a semicircle combined with a low-frequency tail. The tail in 

the graph corresponds to electrode processes. 

Figure 7 presents the temperature dependence of con-

ductivity for Rb5(Ag1/3Hf5/3)(MoO4)6. The conductivity var-

ied non-monotonically with temperature, showing two dis-

tinct segments on both the heating and cooling curves. Dur-

ing heating from 200 С to 360 С, the conductivity in-

creased linearly from 8.9∙10–7 S/cm to 6.1∙10–5 S/cm (with 

activation energy Еа = 0.9 eV). Upon further heating to 

480 С, the conductivity sharply raised to 1.7∙10–3 S/cm  

(Eₐ = 0.8 eV). On the cooling curve, the temperature seg-

ments shifted: in the first segment, observed from 480 to 

330 С, conductivity decreased from σ = 1.7∙10–3 to 1.2∙10–4 

S/cm (Еа = 0.8 eV). In the second segment, from 320 to 

200С, conductivity further decreased from σ = 5.2∙10–5 to 

8.4∙10–7 S/cm (Еа = 1.0 eV). This thermal hysteresis was 

characteristic of a diffuse first-order phase transition in the 

compound.  

The conductivity and activation energy values for 

Rb5(Ag1/3Hf5/3)(MoO4)6 at 480 °С are comparable to those 

of the similar trigonal triple molybdates (Table 3). 

 
Figure 6 The impedance plots of Rb5(Ag1/3Hf5/3)(MoO4)6. 

 
Figure 7 The temperature dependence of the conductivity of 
Rb5(Ag1/3Hf5/3)(MoO4)6. 

Table 3 Conductivity characteristics of ternary molybdates 

Rb5(M1/3R5/3)(MoO4)6. 

Compound 

Сonductivity σ, 

S/cm 
(480°С) 

Activation 

energy 
Еа, eV 

Rb5(Na1/3Zr5/3)(MoO4)6 [45] 3.1∙10−3 0.6–0.8 

Rb5(Ag1/3Zr5/3)(MoO4)6 [45] 1.8∙10−3 0.6–0.8 

Rb5(Ag1/3Hf5/3)(MoO4)6 

(this work) 
1.7∙10−3 0.8 

A theoretical evaluation of the energy barriers for one-, 

two-, and three-dimensional ion transport in 

Rb5(Ag1/3Hf5/3)(MoO4)6 using the softBV program and bond 

valence sum maps (BVS) was conducted. Silver, rubidium, 

and oxygen ions were considered as the most likely mobile 

ions. The analysis of the calculations indicated that in this 

structure, two-dimensional oxygen ion diffusion with an 

energy barrier of 0.713 eV occurs along the (001) plane, 

while three-dimensional oxygen transport with Eb = 0.718 

eV is also possible (Figure 8). The movement of rubidium 

and silver ions is less likely due to their high energy barri-

ers (Table S6). Iso-surfaces encompass (Hf, Ag)O6 octahe-

dra and MoO4 tetrahedra, which are connected through 

shared oxygen vertices (Figure S4). Experimental verifica-

tion of the theoretical calculations results of oxygen con-

ductivity will be the subject of future works. 

 
Figure 8 Energy profile of oxygen transport in the structure of 

Rb5(Ag1/3Hf5/3)(MoO4)6. 
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4. Limitation 

To gain better interpretation of electrical conductivity, the 

experimental verification of the theoretical calculations re-

sults of oxygen conductivity will be done in the future. 

5. Conclusions 

This work extends our insight into the physicochemical 

properties of triple molybdates containing mono- and tet-

ravalent metals. Rb5(Ag1/3Hf5/3)(MoO4)6 was synthesized 

via the solid-state reaction, and its crystal structure was re-

fined using the Rietveld method, employing initial parame-

ters based on Rb5Co0.5Hf1.5(MoO4)6. The compound crystal-

lizes in the sp. gr. R3̅c and belongs to a rather large group 

of trigonal compounds with a ~9–10 Å and long c parame-

ters [46, 47]. These triple molybdates are characterized by 

the framework structures built from isolated МО6 octahe-

dra and MoО4 tetrahedra, with distinctive arrangements of 

polyhedra that create cavities of various shapes and allow 

diverse isomorphic substitutions.  

This study revealed significant ionic conductivity in 

Rb5(Ag1/3Hf5/3)(MoO4)6, reaching a value of 1.7∙10⁻³ S/cm at 

480 °C with an activation energy of 0.8 eV.  

High-temperature powder X-ray diffraction was used to in-

vestigate the thermal expansion of Rb5(Ag1/3Hf5/3)(MoO4)6. 

The title compound can be classified as a high-expansion 

material with low anisotropy. Further investigation of ther-

mophysical properties within this structural type is re-

quired to elucidate the influence nature of elements on 

thermal expansion coefficients and anisotropy. 
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Rb₅(Ag₁/₃Hf₅/₃)(MoO₄)₆. Aluminum contamination was detected 

from the substrate. 

Figure S4: Calculated iso-surfaces of activation energies for oxy-

gen ion transport (red) in the structure of Rb5(Ag1/3Hf5/3)(MoO4)6. 
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