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Abstract 

A series of novel iridium(III) complexes containing 5-N-(aryl)-amino- or 5-

cycloamino-3-(pyridine-2-yl)-1,2,4-triazine ligands was obtained. These 
complexes exhibited red luminescence in solution as well as in the solid 
state.  Based on the DFT studies it was suggested that N(2) atom of the 1,2,4-

triazine core is preferable to N(4) one as the coordination site in the 
complexes of Ir(III).  
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Key findings 
● Eight new iridium(III) complexes based on 6-phenyl-5-R-3-(pyridine-2-yl)-1,2,4-

triazines were synthesized and characterized by spectroscopic techniques. 

● Quantum chemical calculations of the Ir(III) coordination sites were performed 

revealing that N(2) atom of the 1,2,4-triazine core is preferable to N(4) one in the 

coordination of the Ir(III).  

● The obtained iridium(III) complexes exhibited red luminescence both in solutions 

and in powder. 

© 2024, the Authors. This article is published in open access under the terms and conditions of the 

Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Cyclometallated iridium(III) complexes are of wide interest 

due to their promising photophysical properties [1], 

especially phosphorescence [2]. The bright luminescence of 

iridium(III) complexes arises from several factors: the 

lowest excited state is a mixture of metal-to-ligand charge 

transfer (MLCT) and ligand centered (LC) π–π* states, 

while the presence of a heavy iridium atom (heavy-atom 

effect) results in spin-orbit coupling (SOC) [3]. Large ligand 

field splitting (Δ0) of d-electrons is achieved due to the 

presence of cyclometallated C–Ir bonds [3]. Therefore, 

iridium(III) complexes found wide applications in OLEDs 

[3, 4] and light-emitting electrochemical cells (LECs) [5, 6]. 

In synthetic organic chemistry iridium(III) complexes are 

of wide use as photocatalysts in visible-light driven 

reactions [7], C(sp2)−H borylation reactions [8], C(sp3)-H 

amidation reactions [9], CO2 reduction [10], and light-

driven water reduction [11]. Finally, cyclometallated 

iridium(III) complexes are of wide use in medical 

applications, namely, as anticancer agents [12–18], in 

photodynamic therapy (PDT) [19], photothermal therapy 

(PTT) [20, 21], and photoactivated chemotherapy (PACT) 

[22]. It is worth to mention that the fine tuning of 

photophysical and optical properties of such complexes is 

possible by varying the appropriate ligand environment, 

especially in case of an ancillary ligand [23, 24]. Thus, 

iridium(III) complexes can emit in the entire visible range 

from violet to red and even in the IR range [25, 26]. Among 

the plenty of Ir(III) ancillary ligands, the most widespread 

ones belong to N^N type (usually, 2,2'-bipyridine and 1,10-

phenanthroline-bsed ligands are used) due to their 

commercial and synthetic availability, as well as their 

useful applications. Meanwhile, N^N type ligands based on 

derivatives and analogs of 3-(pyridine-2-yl)-1,2,4-triazines 

are less investigated despite promising practical 
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applicability of Ir(III) complexes with this type of ancillary 

ligands. Iridium(III) complexes containing 3-(pyridin-2-yl)-

1,2,4-triazine core as ligand find applications as water-

soluble phosphorescent turn-on sensors for human serum 

albumin [27], chemotherapy agents[28], and precursors for 

bioorthogonal reactions [29].  

Keeping all that in mind, in the framework of this study 

we designed and investigated novel iridium(III) complexes 

based on 5-aminosubstituted 3-(pyridine-2-yl)-1,2,4-

triazine ligands. 

2. Experimental  

Iridium dimer [(ppy)2IrCl]2 was purchased from Shanghai 

Macklin Biochemical Technology. 6-Phenyl-5-cyano-3-

(pyridine-2-yl)-1,2,4-triazine was synthesized according to 

the literature [30]. 1,2,4-Triazine ligands L2 [31] L4 [32] 

and L5-L8 [33] were synthesized as described in the 

literature. Acetonitrile from PanReac Applichem. 
1H NMR spectroscopy data were obtained using a Bruker 

DRX-400 spectrometer with CD3CN as a solvent. Chemical 

shifts were referenced in accordance to the CD3CN residual 

proton resonance (1.94 ppm, δ-scale). 1H NMR spectra were 

recorded for L1 and L3 in CDCl3 and DMSO-d6, respectively. 

Mass spectrometry data were acquired using an Agilent 

6545 Q-TOF LC-MS with electrospray ionization. UV/Vis 

absorption spectra were recorded on a Shimadzu UV-1800 

spectrophotometer, and luminescence emission spectra (in 

solution and in powder) were recorded on a Horiba 

FluoroMax-4 spectrofluorometer by using quartz cells with 

a 1 cm path length at room temperature. Absolute quantum 

yields of luminescence were measured in an integrating 

sphere Quanta-φ of the Horiba FluoroMax 4 at room 

temperature [34]. IR spectra were measured on a LUMOS-

Bruker IR-Fourier spectrometer in potassium bromide 

tablets. 

2.1. Computational Details 

The density functional theory (DFT) calculations were carried 

out at the PM3/B3LYP/def2-TZVP level of DFT theory with 

RIJCOSX approximation and D3BJ correction using ORCA 6.0 QC 

package [35]. The Chemcraft program 

(http://www.chemcraftprog.com/) was used for visualization. 

2.2. General method for the synthesis of 5-

arylamino-1,2,4-triazines  

A mixture of corresponding 5-cyano-1,2,4-

triazine  (0.5 mmol) and amine  (0.5 mmol) was stirred at 

150 °C for 10 h under argon atmosphere. Then the resulting 

mixture was cooled to room temperature, diluted with ethyl 

acetate (10 mL) and impregnated on SiO2 by means of 

evaporation at room temperature. The target product was 

isolated by flash chromatography using DCM:EtOAc (9:1) 

mixture as an eluent. 

2.2.1. N-(2-Methylphenyl)-6-phenyl-3-(pyridine-2-yl)-

1,2,4-triazine-5-amine (L1) 

Yield 89%. m.p. 148 °C. 1H NMR (400 MHz, CDCl3): δ 2.18 

(s, 3H, Me), 7.11–7.37 (m, 4H, NH, 2-Methylphenyl), 7.40–

7.48 (m, 1H, H-5 (Py)), 7.57–7.69 (m, 3H, Ph), 7.80–7.91 (m, 

3H, Ph, H-4 (Py)), 8.18–8.24 (m, 1H, 2-Methylphenyl), 8.43 

(dd, 3J = 7.7, 4J = 1.0 Hz, 1H, H-3 (Py)), 8.88 (dd, 3J = 4.8,  
4J = 2.0 Hz, 1H, H-6 (Py)). 13C NMR (100 MHz, DMSO-d6): δ 

159.8, 153.6, 151.9, 149.6, 147.8, 136.9, 136.1, 134.1, 133.8, 

130.3, 129.7, 128.9 (2C), 128.6 (2C), 126.4, 126.2, 126.0, 

125.0, 123.3, 18.2. ESI-MS, m/z: calcd 340.15 (M + H)+; 

found 340.15. Anal. calcd for C21H17N5: C 74.32, H 5.05, N 

20.63%; found: C 74.27, H 4.99, N 20.55%. IR (КВr), ν, cm–1: 

3058 (CH(arom)), 1444 (N–H). 

2.2.2. N-(4-Methoxyphenyl)-6-phenyl-3-(pyridine-2-yl)-

1,2,4-triazine-5-amine (L3) 

Yield 95%. m.p. oil. 1H NMR (400 MHz, DMSO-d6):: δ 3.85 

(s, 3H, OMe), 6.93-6.99 (m, 2H, 4-methoxyphenyl), 7.22 

(brs, 1H, NH), 7.41-7.47 (m, 1H, H-5 (Py)), 7.57–7.68 (m, 

5H, Ph, 4-methoxyphenyl), 7.79–7.85 (m, 2H, Ph), 7.88 

(ddd, 3J = 7.7, 7.7, 4J = 2.0 Hz, 1H, H-4 (Py)), 8.48 (dd,  
3J = 7.7, 4J=1.0 Hz, 1H, H-3 (Py)), 8.88 (dd, 3J = 4.8, 
4J = 2.0 Hz, 1H, H-6 (Py)). 13C NMR (100 MHz, DMSO-d6): δ 

160.0, 156.6, 154.1, 151.8, 150.2, 148.6, 137.5, 134.4, 131.1, 

130.2, 129.4 (2C), 129.1 (2C), 125.6 (2C), 125.0, 123.9, 114.1 

(2C), 55.7. ESI-MS, m/z: calcd 356.15 (M + H)+; found 

356.15. Anal. calcd for C21H17N5O: C 70.97, H 4.82 %; found: 

C 70.92, H 4.77 %. IR (КВr), ν, cm–1: 3058 (CH(arom)), 

2835 (O–CH3), 1445 (N–H). 

2.3. Method for the synthesis of Irppy2(L1-L6) 

complexes 

A mixture of [(ppy)2IrCl]2 (50 mg, 0.047 mmol, 1 eq) and a 

corresponding ligand L (0.09 mmol, 2 eq) was refluxed in 

30 ml of a DCM:methanol mixture (1:1) under argon for 

20 h. Then the reaction mixture was concentrated in vacuo 

and the resulting powder was recrystallized from 

DCM:acetonitrile mixture (1:1). 

2.3.1. Irppy2L1  

Red crystals. Yield 69 mg (0.08 mol, 88%). NMR 1H 

(CD3CN, δ, ppm): 2.28 (s, 3H, Me), 6.19 (d, J = 8.0 Hz, 1H, 

ppy), 6.30 (d, 3J = 8.0 Hz, 1H, ppy), 6.76 (ddd, 3J = 8.0 Hz, 
3J = 8.0 Hz, 4J = 1.0 Hz, 1H, ppy), 6.85–6.92 (m, 2H, ppy), 

6.99–7.07 (m, 2H, ppy), 7.11–7.16 (m, 1H, H-6(Py)), 7.30–

7.35 (m, 2H, ppy), 7.36–7.41 (m, 1H, ppy), 7.46–7.62 (m, 8H, 

Ph, ppy), 7.67–7.71 (m, 1H, ppy), 7.76–7.89 (m, 4H, ppy), 

8.00–8.08 (m, 3H, ppy), 8.15–8.18 (m, 1H, ppy), 8.21 (d, 
3J = 8.0 Hz, 1H, ppy), 8.27 (s, NH). ESI-MS, m/z: calcd. 

840.24 (M + H)+; found 840.2431. 

2.3.2. Irppy2L2 

Red crystals. Yield 76 mg (0.09 mol, 91%). NMR 1H (CD3CN, 

δ, ppm): 3.81 (s, 3H, MeO), 6.19 (d, 3J = 8.0 Hz, 1H, ppy), 

6.32 (d, 3J = 8.0 Hz, 1H, ppy), 6.77 (ddd, 3J = 8.0 Hz,  
3J = 8.0 Hz, 4J = 1.0 Hz, 1H, ppy), 6.87–6.95 (m, 2H, ppy), 

https://doi.org/10.15826/chimtech.2025.12.1.09
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7.02–7.20 (m, 6H, Ph), 7.28 (ddd, 3J = 8.0 Hz, 3J = 8.0 Hz, 
4J = 1.0 Hz, 1H, ppy), 7.54–7.57 (m, 3H, Ph), 7.63–7.66 (m, 

2H, ppy), 7.79–7.90 (m, 4, ppy), 7.97–7.09 (m, 4H, ppy), 

8.14 (d, J = 8.0 Hz, 1H, H-3(Py)), 8.20 (ddd, 3J = 8.0 Hz,  
3J = 8.0 Hz, 4J = 1.0 Hz, 1H, H-4(Py)), 8.42 (d, 3J = 8.0 Hz, 

1H, H-5(Py)), 8.59 (s, 1H, NH), 8.67 (d, 3J = 4.0 Hz, 1H, ppy), 

ESI-MS, m/z: calcd. 856.24 (M + H)+; found 856.2415. 

2.3.3. Irppy2L3 

Red crystals. Yield 78 mg (0.09 mol, 92%). NMR 1H (CD3CN, 

δ, ppm): 3.82 (s, 3H, MeO), 6.17 (d, J = 8.0 Hz, 1H, ppy), 

6.30 (d, 3J = 8.0 Hz, 1H, ppy), 6.75 (ddd, 3J = 8.0 Hz, 
3J = 8.0 Hz, 4J = 1.0 Hz, 1H, ppy), 6.84–6.93 (m, 2H, ppy), 

7.00–7.16 (m, 6H, Ph), 7.27 (ddd, 3J = 8.0 Hz, 3J = 8.0 Hz,  
4J = 1.0 Hz, 1H, ppy), 7.53–7.56 (m, 3H, Ph), 7.61–7.64 (m, 

2H, ppy), 7.78–7.84 (m, 4H, ppy), 7.94–7.05 (m, 4H, ppy), 

8.16 (d, J = 8.0 Hz, 1H, H-3(Py)), 8.19 (ddd, 3J = 8.0 Hz, 
3J = 8.0 Hz, 4J = 1.0 Hz, 1H, H-4(Py)), 8.44 (d, J = 8.0 Hz, 

1H, H-5(Py)), 8.75 (s, 1H, NH), ESI-MS, m/z: calcd. 856.24 

(M + H)+; found 856.2415. 

2.3.4. Irppy2L4 

Red crystals. Yield 74 mg (0.08 mol, 83%). NMR 1H (CD3CN, 

δ, ppm): 6.18 (d, J = 8.0 Hz, 1H, ppy), 6.31 (d, J = 8.0 Hz, 

1H, ppy), 6.77 (ddd, 3J = 8.0 Hz, 3J = 8.0 Hz, 4J  = 1.0 Hz, 1H, 

ppy), 6.87–6.94 (m, 2H, ppy), 7.01–7.13 (m, 7H, Ph, ppy), 

7.15-7.21 (m, 1H, ppy), 7.39–7.45 (m, 3H, Ph, ppy), 7.47–

7.74 (m, 8H, Ph, ppy), 7.78–7.89 (m, 4H, Ph, ppy), 7.96 (d, 

J = 8.0 Hz, 1H, H-5(Py)), 8.00–8.08 (m, 2H, ppy), 8.11– 

8.17 (m, 2H, ppy), 8.45–8.51 (m, 2H, ppy). ESI-MS, m/z: 

calcd. 918.25 (M + H)+; found 918.2522. 

2.3.5. Irppy2L5  

Red crystals. Yield 73 mg (0.08 mol, 83%). NMR 1H (CD3CN, 

δ, ppm): 2.79–2.94 (m, 2H, pyrrolidine-2-yl), 3.75–3.89 (m, 

2H, pyrrolidine-2-yl), 6.18 (dd, 3J = 8.0 Hz, 4J = 0.7 Hz, ppy), 

6.30 (dd, 3J = 8.0 Hz, 4J = 0.7 Hz, ppy), 6.77 (ddd,  
3J = 4.0 Hz, 3J = 4.0 Hz, 4J = 1.0 Hz, 1H, H-4(Py)), 6.89–6.92 

(m, 2H, ppy), 7.01–7.06 (m, 2H, ppy), 7.07–7.10 (m, 1H, 

ppy), 7.24–7.26 (m, 2H, Ph), 7.37–7.40 (m, 2H, ppy), 7.44–

7.47 (m, 1H, ppy), 7.57–7.60 (m, 1H, ppy), 7.63–7.65 (m, 1H, 

ppy), 7.68 (dd, 3J = 8.0 Hz, 3J = 4.0 Hz, 1H, ppy), 7.78– 

7.86 (m, 4H, Ph, ppy), 7.94–7.96 (m, 1H, ppy), 7.99 (d, 4.0 

Hz, ppy), 8.03–8.06 (m, 2H, ppy), 8.16 (ddd, 3J = 4.0 Hz,  
3J = 4.0 Hz, 4J = 1.0 Hz, 1H, H-4(Py)), 8.69 (d, 3J = 4.0 Hz, 

1H, H-6(Py)). ESI-MS, m/z: calcd. 804.24 (M + H)+; found 

804.2432. 

2.3.6. Irppy2L6 

Red crystals. Yield 70 mg (0.09 mol, 92%). NMR 1H (CD3CN, 

δ, ppm): 2.34 (s, 6H, Piperidin-1-yl), 3.55 (s, 4H, Piperidine-

1-yl), 6.19 (d, J = 8.0 Hz, 1H, ppy), 6.31 (d, J = 8.0 Hz, 1H, 

ppy), 6.79 (ddd, 3J = 8.0 Hz, 3J = 8.0 Hz, 4J = 1.0 Hz, 1H, 

ppy), 6.88–6.96 (m, 2H, ppy), 7.00–7.10 (m, 2H, ppy), 7.31–

7.35 (m, 2H, ppy), 7.36–7.46 (m, 3H, ppy), 7.57–7.62 (m, 

1H, ppy), 7.62–7.66 (m, 2H, Ph), 7.69 (d, 3J = 8.0 Hz, 1H, 

ppy), 7.77–7.87 (m, 3H, Ph), 7.94-8.01 (m, 2H, ppy), 8.03–

8.08 (m, 1H, H-4(Py)), 8.13–8.23 (m, 2H, H-3(Py), ppy), 

8.68 (d, 3J = 8.0 Hz, 1H, H-6(Py)). ESI-MS, m/z: calcd. 

818.26 (M + H)+; found 818.2617. 

2.3.7. Irppy2L7 

Red crystals. Yield 66 mg (0.08 mol, 86%). NMR 1H 

(CD3CN, δ, ppm): 2.66 (s, 2H, morpholine-1-yl), 3.85 (s, 2H, 

morpholine-1-yl), 6.20 (d, 3J = 8.0 Hz, 1H, ppy), 6.31 (d,  
3J = 8.0 Hz, ppy), 6.75–6.82 (m, 1H, ppy), 6.88–6.98 (m, 2H, 

ppy), 7.32–7.46 (m, 5H, ppy, Ph), 7.59–7.70 (m, 4H, ppy), 

7.75–7.91 (m, 5H, ppy), 7.93–8.09 (m, 5H, ppy, Ph), 8.13–

8.22 (m, 1H, H-3(Py)), 8.71 (d, 3J = 8.0 Hz, 1H, H-6(Py)). 

ESI-MS, m/z: calcd. 836.02 (M + H)+; found 836.0234 

2.3.8. Irppy2L8 

Red crystals. Yield 70 mg (0.08 mol, 86%). NMR 1H 

(CD3CN, δ, ppm): 2.72 (s, 2H, thiomorpholine-1-yl), 3.80 (s, 

2H, thiomorpholine-1-yl), 6.19 (d, 3J = 8.0 Hz, 1H, ppy), 6.31 

(d, 3J = 8.0 Hz, ppy), 6.76–6.83 (m, 1H, ppy), 6.88–6.96 (m, 

2H, ppy), 7.33–7.47 (m, 5H, ppy, Ph), 7.58–7.71 (m, 4H, 

ppy), 7.76–7.90 (m, 5H, ppy), 7.94–8.10 (m, 5H, ppy, Ph), 

8.14-8.22 (m, 1H, H-3(Py)), 8.70 (d, 3J = 8.0 Hz, 1H, H-

6(Py)). ESI-MS, m/z: calcd. 819.95 (M + H)+; found 

819.9528 

3. Results and Discussions 

3.1. Synthesis 

We designed and synthesized Irppy2(L1-L8) complexes, 

where ppy are archetypal 2-phenylpyridine ligands, and L 

is 6-phenyl-5-R-3-(pyridine-2-yl)-1,2,4-triazine ligands 

(Scheme 1). The choice of cyclic amines residues [31] or 

aniline derivatives [32] as R was due to a high electron-

donating effect of these group which is favorable for the 

intense luminescence. These ligands were obtained by 

means of ipso-substitution of a C5-cyano group of the 

corresponding 5-cyano-1,2,4-triazines [31–33]. The target 

iridium complexes were obtained in excellent yields by 

means of a standard reaction between iridium dimer 

[(ppy)2IrCl]2 and 2 eq. of the corresponding 1,2,4-triazine 

ligands L1–8 in DCM:methanol = 1:1 mixture as a solvent. 

Chloride anion was presented as a counterion in the 

complexes. The structures of the obtained complexes were 

confirmed by 1H NMR spectroscopy and HRMS mass-

spectrometry data. 
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Scheme 1 Synthesis of Ir(III) complexes.  

3.2. Quantum chemical calculations 

For 2-pyridyl-substituted 1,2,4-triazine ligands one may 

suggest two coordination sites for Ir(III) cation, namely, N2 

atom [27–28] or, less commonly, N4 atom [29]. Therefore, 

in order to confirm the position of the coordination site of 

the 1,2,4-triazine moiety, quantum chemical calculations 

were carried out for the iridium(III) complex Irppy2L5 

(Figure 1). The structures Irppy2L5_N4, with N(4) atom in 

the 1,2,4-triazine moiety (as coordination site), and 

Irppy2L5_N2, with N(2) atom in the 1,2,4-triazine moiety 

(as coordination site), were optimized. A frequency analysis 

revealed no imaginary frequencies, indicating that the 

actual minimum position on the potential energy surface 

(PES) of the atomic systems optimized structures was 

obtained. 

As a result of the analysis of the total potential energies 

of the optimized structures, the advantage of the  

Irppy2L5_N2 structure over Irppy2L5_N4 was found to be 

−54.82 kJ/mol. This can be explained by steric hindrances 

arising as a result of the repulsion of the pyrrolidine-1-yl 

substituent at C(5) position of the 1,2,4-triazine core from 

the coordination center of the Irppy2L5_N4 structure. In 

the Irppy2L5_N2 structure, such hindrances are not 

observed, which leads to such a significant gain. 

Nevertheless, for the complete proof of the energy gain 

of the atomic system of the 1,2,4-triazine-based iridium(III) 

complex with N(2) iridium(III) coordination, structures 

Irppy2L9 (with 6-phenyl-3-(pyridine-2-yl)-1,2,4-triazine, 

Figure 2) without the substituent at the the C(5) position of 

the 1,2,4-triazine were optimized (Figure 3). In this case 

there should be no steric effect. Indeed, the energy gain of 

Irppy2L9_N2 structure over Irppy2L9_N4 was revealed to 

be −8.73 kJ/mol. While this value is less than the one of 

structures Irppy2L5, it is non-negligible.  

Thus, based on quantum chemical calculations it was 

confirmed that the coordination of iridium(III) cation with 

N(2) atom of the 1,2,4-triazine core in 3-pyridine-2-yl-

1,2,4-triazine complexes is more energetically favorable. 

3.3. Photophysical studies 

Photophysical properties of the synthesized Ir(III) 

complexes Irppy2(L1-L8) were evaluated (Table 1, Figures 

4–5, S1–S2). UV absorption and emission spectra were 

recorded in deoxygenated acetonitrile solutions with the 

concentration C = 10 µM. Thus, in UV spectra several 

absorption bands were observed. The bands with maxima 

around 248–297 nm correspond to the ligand-based π–π* 

transitions and the bands with maxima around 325–399 

correspond to n–π* transitions, while the bands with the 

lowest energy originate from the MLCT state due to the 

presence of the heavy iridium atom. The last ones are 

characterized by a very low extinction coefficient values  

(ca. 800–2600 M–1∙cm–1). Emission spectra showed several 

emission bands: three narrow bands with low intensity 

around 400–500 nm as well as a broad band with maxima 

at 664–688 nm corresponding to the 3MLCT-state emission. 

For all the complexes the emission band ended beyond the 

spectrofluorometer measurement range. The absolute 

quantum yield values in MeCN were < 0.1 % in all cases 

resulting in low emission intensity. 

4. Limitations 

For all the obtained iridium(III) complexes based on 6-

phenyl-5-R-3-(pyridine-2-yl)-1,2,4-triazines, very low 

photoluminescence quantum yields (less than 0.1%) were 

observed. This might be associated with the influence of 

1,2,4-triazine presented in these ligands. 

5. Conclusions 

In this work eight iridium(III) complexes based on 6-

phenyl-5-R-3-(pyridine-2-yl)-1,2,4-triazine ligands have 

been successfully synthesized for the first time. Quantum 

chemical calculations were performed to estimate the 

possible Ir(III) coordination sites. 

 
Figure 1 Optimized structures for the complexes Irppy2L5_N4 (A) 

and Irppy2L5_N2 (B). 

(A)                                           (B) 
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Figure 2 Structure of the ligand L9. 

 
Figure 3 Optimized structures of the complexes Irppy2L9_N4 (A) 

and Irppy2L9_N2 (B). 

Table 1 Photophysical properties of Irppy2(L1-L8) complexes. 

Ligand λABS (nm) ε, (М−1⋅cm−1)a λabs (nm)b λem (nm)c Ф (%)d 

L1 
252, 342, 381sh, 

467sh 
800 398, 410, 422, 664 644 < 0.1 

L2 255, 354, 492sh 2600 424, 439, 453, 688 677 < 0.1 

L3 
251, 287sh, 341, 

506sh 
1100 

358, 369, 379, 409, 
688 

681 < 0.1 

L4 
249, 283sh, 345sh, 

376sh, 498 
1000 425, 439, 454, 677 708 < 0.1 

L5 
255, 339, 378sh, 

503sh 
900 428, 445, 459, 662 680 < 0.1 

L6 
250, 287sh, 341, 

400sh, 506sh 
900 474, 494, 511, 672 675 < 0.1 

L7 
253, 284, 342sh, 

484sh 
800 

426, 438, 453, 473, 
676 

652 < 0.1 

L8 
266, 301, 388, 

401sh, 489sh 
1100 442, 452, 683 763 < 0.1 

a for the most red-shifted bands; 
b fluorescence spectra in acetonitrile solution; 
c fluorescence spectra in powder; 
d absolute quantum yields in acetonitrile solution. 

 
Figure 4 Absorption (A) and emission (B) spectra of Irppy2(L1–L8) complexes in MeCN solution. 

(A)                                            (B) 
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Figure 5 Emission spectra of Irppy2(L1–L8) complexes in powder at r.t. 

It was found that N(2) atom of the 1,2,4-triazine core is 

more preferable than N(4) one for the coordination of 

Ir(III). All eight iridium(III) complexes with an auxiliary 3-

pyridin-2-yl-1,2,4-triazine ligands demonstrated red 

luminescence both in the solid state and in a solution. It was 

found that the emission band maxima of the complexes 

depend strongly on the nature of amine moieties at the C(5) 

position of the 1,2,4-triazine core. The search for complexes 

with the best photophysical properties is in progress. 

Supplementary materials 
Figures S1–5 Representative 1H NMR spectra of Irppy2(L1, L2 ,L4-

6) complexes. 
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