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Abstract 
Electrochemical flow-through sensor based on pillar[3]arene[2]quinone 
(P[3]A[2]Q) derivative was developed. Nitrophenol determination was based 
on P[3]A[2]Q redox current changes. Also, the shift of cathodic potential was 

observed compared to nitrophenol reduction current registration directly. 
Using carbon black (CB) as a matrix for macrocycle implementation provided 

the sensor stability in the flow when it was applied with a 3D printed flow-
through cell. CB and macrocycle were drop casted from the same aliquot 
providing one-step modifying layer production by the principle of “one-pot 

synthesis”. The flow-through chronoamperometric sensor designed allowed 
determining mononitrophenols in the concentration range of 1 nM – 0.1 mM 
with the limit of detection (LOD) of 0.5 nM. The linear concentration range 

of 10 nM – 0.1 mM with LOD of 2 nM was obtained for 2,4-dinitrophenol, 2,6-
dinitrophenol and 2,4,6-trinitrophenol. The sensor proposed was tested with 

a model effluent sample, and sufficient recovery about 98±1% was obtained. 
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Key findings 
● Electrochemical sensor based on carbon black and pillar[3]arene[2]quinone for ni-

trophenol determination was developed.

● Pillar[3]arene[2]quinone engages with nitrophenols on the “host-guest” interac-
tion principle, which allowed to shift the cathodic potential of nitrophenol determi-

nation.

● Low limits of detection allow using the sensor for eco-monitoring of nitrophenols

in a real sample.
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1. Introduction

Electrochemical sensors are powerful analytical equipment 

due to their portability, mobility and affordable cost. Their 

high sensitivity and selectivity account for their wide usage 

in environment monitoring and clinical diagnostics, 

whereas there is a possibility to use them both in laboratory 

and in point-of-care testing [1]. 

Electrochemical sensors response is a result of electro-

chemical conversion of analyte or a redox mediator on the 

transducer interface into a readable electric signal. 
Analytical characteristics such as selectivity and sensi-

tivity are strongly dependent on microstructure and prop-

erties of the electrode modifying coating [2], so the 

nanostructured materials are commonly used to improve 

the analytical characteristics of the sensors developed [3]. 

The inclusion of macrocyclic compounds such as cyclodex-

trin, calix[n]arene, curcubituril, etc., into modifying layer 

is a promising approach in the field of electrochemical sen-

sor development. These compounds have the unique size of 

macrocycle cavities and some specific properties that allow 

creating novel kinds of selective sensors. Outstanding fea-

tures of macrocycles found their application in various su-

pramolecular systems such as liquid crystals [4], mechani-

cally interlocked molecules [5], metallorganic backbone 

structures [6], supramolecular polymers [7–9], drug deliv-

ery systems [10, 11], cell bioimaging agents [12], transmem-

brane ion channels [13], and molecular glue [14]. Supramo-

lecular “bottom-up” assembly provides an efficient tool for 

multifunctional hybrid system design by including the 
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individual functional components through the non-covalent 

interactions. Among them “host-guest” molecular recogni-

tion becomes more attractive for the researchers. The reason 

is the opportunity to bind two or more molecules in a simple 

and reversible way, which allows to design some new supra-

molecular structures [15–17]. It confirms the great promise 

of using macrocycles for sensor devices development. 

Pillar[n]arenes are among the most interesting com-

pounds to include into electrochemical sensors assembly. 

First obtained by T. Ogoshi et al. [18], they represent a 

novel class of supramolecular compounds [19]. They com-

bine some characteristics of other “host-guest” systems 

such as highly symmetrical column structure as in curcubi-

turils, rich π-electron density in aromatic cavity as in ca-

lix[n]arenes and a lot of hydroxyl groups at the rims typical 

for highly functionalized cyclodextrins [20]. Previously, the 

fuctionalized pillar[n]arenes were used as a part of solubil-

izers [21], gelatinization agents [22], sorbents [23], target 

drug delivery systems [24], OLED-devices [25] and trans-

membrane ion channels [26]. 

Nowadays, the number of studies using pillar[n]arenes as 

the sensor modifiers is limited, but the idea of their application 

is an essential and promising one due to the unique properties 

of their structure [20]. In particular, pillar[5]arene and its de-

rivatives exhibit sufficient electrochemical activity. These 

compounds were used for a selective determination of organic 

phosphorus and carbamate pesticides [27], neuromediators 

[28, 29], paraquat [30], hemoglobine [3], metal ions [31], chi-

ral substances [32], caffeic acid [33], aflatoxine M1 [34], hy-

drogene peroxide, uric acid [35] and DNA damage discrimina-

tion [36]. Thus, pillar[5]arenes (especially those functional-

ized with different groups) are promising agents which can be 

used in the development of devices for determining a wide 

range of compounds. 

Nitrophenols represent one of the most important groups 

of environment pollutants. They are widely used in such in-

dustrial areas as production of plastics, paints, insecticides 

and explosives [37]. They tend to accumulate in water and 

soil, so they are high priority pollutants of the environment 

endangering people health [38]. At the moment there are dif-

ferent approaches of chemical analysis used for nitrophenol 

determination: high-performance liquid chromatography 

[39], UV-vis spectroscopy [40], fluorescence spectroscopy 

[41], capillary electrophoresis [42] and electrochemical de-

vices [43]. The latter are the most convenient and exhibit 

high sensitivity and reproducibility [38] along with an op-

portunity to carry out the “on-site” analysis [44]. All of these 

advantages together provide an accurate determination of 

nitrophenols for ecomonitoring aims. 

In this work we suggested mononitrophenols, 2,4-dini-

trophenol, 2,6-dinitrophenol and 2,4,6-trinitrophenol de-

termination through redox peak currents of pillar[5]arene 

quinone derivative. This derivative engages with nitrophe-

nols on the principle “host-guest” interaction which allows 

shifting the cathodic potential of nitrophenol determination 

compared to their own reduction peaks registration. The 

electrochemical sensor based on pillar[5]arene quinone de-

rivative demonstrates a high level of sensitivity towards all 

the nitrophenols studied. Both cyclic voltammetry and 

chronoamperometry were applied for the evaluation of ana-

lyte determination parameters. The flow-through chronoam-

perometric determination was carried out with a 3D printed 

electrochemical cell made of polylactic acid. This material 

meets all the requirements of three-dimension printing. In 

addition, biodegradability of this substance, its compatibility 

with biopolymers, low cost, and sufficient treatment accu-

racy make polylactic acid an appropriate material for flow-

through cell production. 

2. Materials and methods 

2.1. Reagents 

4,8,14,18,23,26,28,31,32,34-decakis(2’-bromethoxy)-

pillar[5]arene (pillar[3]arene[2]quinone, P[3]A[2]Q) (Fig-

ure 1) was synthesized according to ref [45]. 

Carbon black (CB) N220 was purchased from Cabot (Ra-

venna, Italy). Prior to its use, 1.0 mg of CB was mixed with 

0.25 mL of concentrated nitric acid and 0.75 mL of concen-

trated sulphuric acid followed by ultrasonication for 60 

min. The sediment was spinned off, rinsed and dried at 

60 °С. The oxidized CB was ultrasonicated in 1.5 mL of pro-

pylene carbonate for 2 h to obtain 0.66 mg/mL working so-

lution. The P[3]A[2]Q exact mass was dissolved in CB 0.66 

mg/mL suspension up to 10 mM concentration followed by 

ultrasonication for 2 h in the case of modifier “one-pot syn-

thesis”. 

All the other reagents were of analytical grade and did 

not require any additional purification. The working solu-

tions were prepared using deionized water Millipore-Q 

(Simplicity®, Merck-Millipore, Mosheim, France). 

All the measurements were carried out in the Britton-

Robinson buffer (BRB) consisting of 40 mM acetic acid, 40 

mM phosphoric acid, 40 mM boric acid and 50 mM potas-

sium sulphate. 

The model solution of effluents contained 0.04 М H3PO4, 

0.04 М H3BO3, 0.04 М CH3COOH, 0.05 М NaSO4, 0.41 мМ 

CaCl2, 0.26 мМ MgCl2, 93 мкМ NH4Cl, 0.27 мМ KOH [46] 

spiked with m-nitrophenol was used for sensor aprobation 

in a real sample. 

 
Figure 1 Chemical structure of P[3]A[2]Q. 
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2.2. Screen-printed carbon electrodes (SPCEs) 

modification 

SPCEs were produced utilizing a printer DEC 248 (Dec, Lon-

don, England) on Lomond PE DS Laser Film (thickness 125 

µm, Lomond Trading Ltd., Douglas, Isle of Man) through 

step-by-step coating of 4 layers. They were: the conductive 

polymeric PSP-2 silver tracks (Delta-Paste, Moscow, Rus-

sia), silver paste layer for pseudo-reference electrode fab-

rication (polymeric paste Ag/AgCl PSCP-1, Delta-Paste, 

Moscow, Russia), tracks of carbon/graphite paste 

C2030519P4 as a counter and a working electrode (Gwent 

group, Pontypool, the UK) and an isolating layer (paste 

D21440114D5 Gwent group, Pontypool, the UK). Every layer 

was hardened at 80 oC. The geometric area of working elec-

trode was equal to 3.8 mm2. 

The working electrode modification was carried out by 

drop casting of 1 μL suspension consisted of 0.66 mg/mL CB 

and 10 mM P[3]A[2]Q in propylene carbonate followed by 

drying in the oven at 100 °C. 

2.3. Flow-through cells fabrication 

The flow-through cell was designed using Wanhao Duplica-

tor 9/300 (Jinhua Wanhao Spare Parts, Wanhao, China) 

with one extruder (nozzle diameter 0.3 mm) from the 

poly(lactic acid) filaments. The layer thickness was 0.1 mm 

with a printing rate 700 mm per second at 220 oC. The 3D 

model of the flow-through cell designed is presented at Fig-

ure S1. The dimensions of the cells were 2.4x4.4x2.7 cm. 

The volume of a replaceable inner camera of the flow-

through cell was 10 μL. 

Multi-mode potentiostat BioStat (ESA Bioscience Inc., 

Chelmsford, Massachusetts, USA) was used for chronoam-

perometric experiments. Voltammetric investigations were 

carried out with potentiostat-galvanostat CHI 660E (CH In-

struments, Ostin, Texas, the USA). 

3. Results and Discussion 

3.1. Electrochemical behaviour of coating based 

on CB and P[3]A[2]Q 

Pillar[5]arenes [47] and their derivatives [48] were suc-

cessfully used as electron transfer mediators in electro-

chemical sensor and biosensor development. However, 

these compounds have some disadvantages, for example, 

electrode coating based on pillar[5]arene can lose its elec-

trochemical activity over time due to intramolecular 

bounds formation [49]. Pillarquinones are devoid of this 

disadvantage and demonstrate the tendency to quasi-re-

versible redox conversion that is not complicated by intra-

molecular bounds appearance [45].  

Pillar[5]arenes as a modifying electrode coating are of-

ten used together with carbon nanomaterials to prevent 

surface inactivation caused by chemosorption of intermedi-

ate oxidation products [50]. In this work P[3]A[2]Q was ap-

plied simultaneously with CB from a single aliquot in one-

step protocol that was possible because propylene car-

bonate was used as a solvent. Implementation of CB into the 

coating content led to 2.5 times increase in the P[3]A[2]Q 

redox peak height (Figure 2).  

The surface activation after the modifier deposition on 

the electrode was carried out by tenfold scanning of the po-

tential. Redox peak currents grew during five consecutive 

cycles of potential scanning followed by the stabilization of 

the peak currents (Figure 3). 

The nature of the redox signals and P[3]A[2]Q electro-

chemical conversion was discussed in details in the previ-

ous studies [45]. The proposed mechanism of reversible re-

duction and oxidation of quinone fragments in P[3]A[2]Q 

molecules is presented in Scheme 1. 

 
Figure 2 Voltammograms recorded on SPCEs modified with 

P[3]A[2]Q only (black) and CB with P[3]A[2]Q (grey). Cyclic volt-

ammetry, BRB, pH 7.0, 0.1 V/s. 

 
Figure 3 Anodic (black) and cathodic (grey) peak currents recorded 
on SPCEs modified with CB and P[3]A[2]Q depending on number of 

measurements. Average±S.D. for five individual sensors prepared 

from the set of equal reagents. Cyclic voltammetry, BRB, pH 7.0, 

0.1 V/s. 

 
Scheme 1 The proposed mechanism of reversible reduction and 

oxidation of quinone fragments in P[3]A[2]Q molecules. 
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3.2. Voltammetric determination of nitrophenols  

The response changes of the coating based on P[3]A[2]Q in 

presence of o-nitrophenol, m-nitrophenol, p-nitrophenol, 

2,4-dinitrophenol, 2,6-dinitrophenol, 2,4,6-trinitrophenol 

were investigated. Redox peak currents of P[3]A[2]Q in-

creased with nitrophenol concentration. Probably, the in-

teraction between P[3]A[2]Q and nitrophenols occurs 

through the “host-guest” mechanism [51]. Electrochemical 

determination of nitrophenols by P[3]A[2]Q peak currents 

has the advantage compared to the other common methods. 

This advantage is based on intrinsic nitrophenol reduction 

currents. Here, the redox peaks were observed at much 

lower potentials in the range from –0.8 to –0.6 V [38, 52, 

53] compared to P[3]A[2]Q oxidation peak potential in the 

area close to 0.25 V. For all mononitrophenols the morphol-

ogy and the peak current values were quite similar. The typ-

ical cyclic voltammograms for m-nitrophenol determina-

tion are presented in Figure 4a. 

Voltammetric determination of nitrophenols through 

redox peak currents of P[3]A[2]Q allows the quantification 

of mononitrophenols in the range from 10 nM to 0.1 mM 

with the limit of detection (LOD) of 5 nM. The LOD value 

was calculated for S/N = 3 criteria. The example of calibra-

tion curve for m-nitrophenol is presented in Figure 4b, the 

calibration curves for all mono-nitrophenols are presented 

in Figure S2. 

 
Figure 4 Voltammograms of SPCEs modified with CB and 

P[3]A[2]Q in the presence of different concentrations of m-nitro-
phenol (a); calibration curve of m-nitrophenol determination. Av-

erage±S.D. for five individual sensors prepared from the set of 

equal reagents (b). BRB, pH 7.0, 0.1 V/s. 

The voltammograms of 2,4-dinitrophenols, 2,6-dinitro-

phenols and 2,4,6-trinirophenols were recorded in the same 

way. The current peak morphology and the values were 

very similar for these three compounds. But compared to 

voltammograms recorded for m-nitrophenols, the oxidation 

peak for di- and trinitrophenols was less pronounced. The 

difference in the sensor response and shape of the peaks for 

mono-, di-, and trinitrophenols is likely due to steric con-

straints within di- and tri-nitro compound incorporation 

into the cavity of P[3]A[2]Q. It is attributed to the number 

of substituents and, consequently, size. The typical cyclic 

voltammograms for 2,4-dinitrophenol determination are 

presented in Figure 5a.  

The P[3]A[2]Q redox peak currents allow determining 

2,4-dinitrophenol, 2,6-dinitrophenol and 2,4,6-trinitrophe-

nols in the range from 0.1 µM to 0.1 mM using the voltam-

metric approach. The LOD was equal to 50 nM calculated 

for S/N = 3 criteria. The example of calibration curve for 

2,4-dinitrophenol is presented in Figure 5b; the calibration 

curves for di- and trinitrophenols are presented in Figure 

S3. 

The linear regression equation parameters for each type 

of the compounds studied are presented in Table 1.  

3.3. Chronoamperometric nitrophenol detection  

The approach introduced was further used for chronoam-

perometric sensor development based on 3D printed flow-

throw system and SPCE modified with CB and P[3]A[2]Q. 

 
Figure 5 Voltammograms recorded on SPCEs modified with CB 

and P[3]A[2]Q in the presence of different concentrations of 2,4-
dinitrophenol (a); calibration curve of 2,4-dinitrophenol determi-

nation (b). Average±S.D. for five individual sensors prepared 

from the set of equal reagents. BRB, pH 7.0, 0.1 V/s. 
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Table 1 Linear regression equation parameters for the nitrophenols 
studied with voltametric approach on SPCE covered with CB and 

P[3]A[2]Q. 

Analyte 
y = a+ bx 

Δ(I, μA) = a + b∙log(c, M) 
R2 

p-nitrophenol I, µA = (3.87±0.02) + 

(0.429±0.002)∙log(c, M) 
0.9998 

m-nitrophenol I, µA = (3.92±0.01) + 

(0.433±0.002)∙log(c, M) 
0.9999 

o-nitrophenol I, µA = (3.96±0.02) + 
(0.437±0.003)∙log(c, M) 

0.9997 

2,4-dinitrophenol I, µA = (2.45±0.01) + 

(0.264±0.002)∙log(c, M) 
0.9998 

2,6-dinitrophenol I, µA = (2.40±0.02) + 

(0.269±0.002)∙lg(c, M) 
0.9998 

2,4,6-trinitrophe-
nol 

I, µA = (2.49±0.03) + 
(0.275±0.004)∙log(c, M) 

0.9997 

The flow of buffer or analyte solution was sequentially 

passed through the electrochemical cell, and the current 

shift was recorded. The chronoamperometric signal was 

quite similar for such mononitrophenols as o-nitrophenol, 

m-nitrophenol, and p-nitrophenol. Another group of com-

pounds with similar signal was formed from di- and trini-

trophenols: 2,4-dinitrophenol, 2,6-dinitrophenol, and 

2,4,6-trinitrophenol. 

The sensor signal (ΔI) for all nitrophenols studied was 

defined as a difference between the currents measured in 

absence (I0) and in presence (I) of nitrophenol in the flow. 

Dynamic sensor response for m-nitrophenol as an example 

is shown in Figure 6a.  

 
Figure 6 Chronoamperometric sensor response at –0.25 V (a) and 
current shift dependence on polarization potential on SPCE modi-

fied with CB and P[3]A[2]Q in presence of 10 µM of m-nitrophenol 

(b). Arrows indicate the flow switching from buffer solution to m-
nitrophenol solution and back. Average±S.D. for five individual 

sensors prepared from the set of equal reagents. Chronoamperom-

etry, BRB, pH 8.0, flow rate 0.2 mL/min. 

The chronoamperometric response was observed both at 

negative and positive potentials; however, the maximal re-

sponse was achieved at –0.25 V. The typical current shift 

dependence on the polarization potential for m-nitrophenol 

is presented in Figure 6b. 

To get the highest response value, the flow rate of 

0.2 mL/min and the pH value of 8.0 should have been used 

for all nitrophenols. The current shift dependences on flow 

rate and pH value for m-nitrophenol are presented in Figure 

7. This type of regularity was observed for all of nitrophe-

nols investigated.  

The signal increased with pH value in the range from 

2.0 to 6.0 with a sharp increase in the area of 6.0–8.0. After 

the pH value reached 8.0, the signal stabilization was ob-

served. This behavior can be explained by alternative oxi-

dation of quinone groups by dissolved oxygen. The oxygen 

reactivity is higher in alkaline medium. 

The sensors developed allowed determining various mo-

nonitrophenols at concentrations from 1 nM to 0.1 mM with 

LOD of 0.5 nM, according to the S/N = 3 criteria. As for 2,4-

dinitrophenol, 2,6-dinitrophenol, and 2,4,6-trinitrophenol, 

the linear range was from 10 nM to 0.1 mM with LOD equal 

to 2 nM, calculated for S/N = 3 criteria. Calibration curves 

for m-nitrophenol and 2,4-dinitrophenol as the examples 

are shown in Figure 8, calibration curves for all the com-

pounds are presented in Figure S4 and Figure S5. 

 
Figure 7 Current shift dependences on flow rate (a) and pH value 

(b) for SPCEs modified with CB and P[3]A[2]Q in presence of 10 µM 

of m-nitrophenol at –0.25 V. Average±S.D. for five individual sen-
sors prepared from the set of equal reagents. Chronoamperometry, 

BRB, (a) pH 8.0, (b) flow rate 0.2 mL/min. 
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Figure 8 Calibration curves of m-nitrophenol (black) and 2,4-dini-

trophenol (grey) on SPCEs modified with CB and P[3]A[2]Q. Aver-
age±S.D. for five individual sensors prepared from the set of equal 

reagents. Chronoamperometry, BRB, pH 8.0, flow rate 0.2 mL/min, 

–0.25 V. 

Analytical characteristics of the mono-, di-, and trini-

trophenols with the flow-through system are presented in 

Table 2.  

The 3D printed flow-through system using SPCE modi-

fied with CB and P[3]A[2]Q allows performing up to 

40 measurements per hour on the same electrode. 

In spite of the durable effect of the flow in the flow-

through system, there were no significant changes in the 

properties of modifying layer on SPCEs. This can be ex-

plained by the high stability of the coating based on CB com-

bined with P[3]A[2]Q. 

Analytical characteristics of the nitrophenol determina-

tion on the sensors developed are presented in Table 3 and 

are comparable or better than ones for the other electro-

chemical sensors previously reported in the literature. 

The interfering effect of the components of model efflu-

ent solution on m-nitrophenol chronoamperometric deter-

mination parameters was assessed (Table 4).  

Table 2 Analytical characteristics of the various nitrophenols de-

termination using the flow-through system and SPCEs modified 

with CB and P[3]A[2]Q. 

Analyte 
y = a+ bx 

Δ(I, μA) = a + b∙log(c, M) 
R2 

p-nitrophenol 
Δ(I, μA) = (0.557±0.004) + 

(0.0579±0.0003)∙log(c, M) 
0.9998 

m-nitrophenol 
Δ(I, μA) A = (0.549±0.02) + 
(0.0584±0.0003)∙log(c, M)) 

0.9999 

o-nitrophenol 
Δ(I, μA)  = (0.534±0.03) + 

(0.0592±0.0004)∙log(c, M) 
0.9998 

2,4-dinitrophenol 
Δ(I, μA) A = (0.479±0.002) + 

(0.0527±0.0003)∙log(c, M) 
0.9998 

2,6-dinitrophenol 
Δ(I, μA) A = (0.482±0.002) + 
(0.0534±0.0004)∙log(c, M) 

0.9997 

2,4,6-trinitrophenol 
Δ(I, μA) A = (0.475±0.003) + 

(0.0519±0.002)∙log(c, M) 
0.9997 

The model sample of effluent contained 0.04 М H3PO4, 

0.04 М H3BO3, 0.04 М CH3COOH, 0.05 М Na2SO4, 0.41 мМ 

CaCl2, 0.26 мМ MgCl2, 93 µМ NH4Cl and 0.27 мМ KOH. Af-

ter 100-fold dilution of the sample with working buffer so-

lution the recovery obtained was 98 %. Since the maximum 

permissible concentration level of nitrophenols in the efflu-

ents was in micromolar range [72], the sensor developed 

can provide a reliable determination of the ecotoxicant in 

natural reservoirs.  

4. Limitations 

There are no special limitations in our study. 

5. Conclusion 

The electrochemical sensor based on SPCE modified with 

CB and P[3]A[2]Q was developed. The device demon-

strated high sensitivity towards a group of nitrophenols. 

Voltammetric measurements allowed observing the in-

crease of P[3]A[2]Q own redox peaks in presence of nitro-

phenols, which can be attributed to their possible “host-

quest” interaction. This fact helped to carry out the chron-

oamperometric measurements at the potential of 

–0.25 V which is much higher than the cathodic potential 

of nitrophenols direct reduction recorded at the range  

–0.8…–0.6 V. The flow-through chronoamperometric ap-

proach provided the possibility of mononitrophenols and 

2,4-dinitrophenol, 2,6-dinitrophenol and 2,4,6-trinitro-

phenol determination in the concentration ranges from 1.0 

nM to 0.1 mM with LOD of 0.5 nM and from 10 nM to 0.1 

mM with LOD of 2 nM, respectively.  

The electrochemical sensor suggested has a low cost 

and a simple assembly. Thus, all the modifying compo-

nents were casted from a single aliquot that allowed us 

to produce the modifying coating in one step using “one-

pot synthesis” principle. Beside this, using CB as a matrix 

for P[3]A[2]Q implementation into the electrode coating 

helped to maintain its mechanical stability during the 

flow-through measurements. This feature provides mul-

tiple (up to 40 per hour) measurements on a single  

sensor.  

The recovery value of 100-fold diluted sample of model 

effluent was 98±1% for m-nitrophenol. In addition, low 

limits of detections and micromolar permissible concen-

tration levels allow using the sensor developed for eco-

monitoring of nitrophenols in natural water. The ad-

vantage of flow-through analysis methods is primarily 

provided by the large number of analyzed samples over a 

period of time. Additionally, the use of 3D printed flow-

through cell has such advantages as easy replacement of 

individual components, extremely low manufacturing 

cost, biocompatibility and biodegradability. 

 

 

 

https://doi.org/10.15826/chimtech.2025.12.1.01


Chimica Techno Acta 2025, vol. 12(1), No. 12101 ARTICLE  

  

 7 of 10 DOI: 10.15826/chimtech.2025.12.1.01  

Table 3 Comparison of the electrochemical characteristics of the sensors developed with other electrochemical sensors for nitrophenol 

determination described in literature. 

Sensor content 
Detection 

mode 
 

Concentration range, 

М 
LOD, М Ref. 

 o-nitrophenol 

GCEa/graphene nanosheets, functionalized with β-cyclodex-

trins 

DPVb 5.0∙10–6–4.0∙10–4 3.0∙10–7 [54] 

GCE/GOc/poly(ethyleneimine) dendrimer DPV 5.0∙10–6–1.55∙10–4 1.0∙10–7 [55] 

GCE/cyclodextrin/RGOd, functionalized with chitosan DPV 1.2∙10–7–4.0∙10–5 1.8∙10–8 [56] 

SPCE/(CB + P[3]A[2]Q) CVe 1.0∙10–8–1∙10–4 5.0∙10–9 This 

work 

SPCE/(CB + P[3]A[2]Q) CAf 1.0∙10–9–1∙10–4 5.0∙10–10 This 
work 

 m–nitrophenol 

CPEg/β-cyclodextrin, mesoporous Si CV 2.0∙10–7–1.4∙10–6 5.0∙10–8 [57] 

GCE/macroporous carbon, amino-bridged organic poly-

calix[4]arenes 

DPV 1.0∙10–6–4.0∙10–4 1.22∙10–7 [58] 

GCE/magnetite-PtNPsh, stabilized with 3-n-propyl-4-picoline DPV 1.0∙10–7–1.5∙10–6 4.5∙10–8 [59] 

SPCE/(CB + P[3]A[2]Q) CV 1.0∙10–8–1∙10–4 5.0∙10–9 This 
work 

SPCE/(CB + P[3]A[2]Q) CA 1.0∙10–9–1∙10–4 5.0∙10–10 This 

work 

 p-nitrophenol 

GCE/Ni/N-doped carbon nanocomposite DPV 6.0∙10–8–1.0∙10–4 4.0∙10–9 [60] 

GCE/Cr-MOFi NPs DPV 2.0∙10–6–5.0∙10–4 7.0∙10–7 [61] 

GCE/GO DPV 1.0∙10–7–1.2∙10–4 2.0∙10–8 [62] 

SPCE/(CB + P[3]A[2]Q) CV 1.0∙10–8–1∙10–4 5.0∙10–9 This 

work 

SPCE/(CB + P[3]A[2]Q) CA 1.0∙10–9–1∙10–4 5.0∙10–10 This 
work 

 2,4-dinitrophenol 

GCE/MIPj/GO CV 1.0∙10–6–1.5∙10–3 1.0∙10–6 [63] 

GCE/C3N4/V2O5 CV 1.0∙10–8–1.0∙10–4 3.3∙10–9 [64] 

GCE/RuO2NPs-decorated V2O5 nanoflakes DPV 5.0∙10–9–3.5∙10–6 1.07∙10–9 [65] 

SPCE/(CB + P[3]A[2]Q) CV 1.0∙10–7–1.0∙10–4 5.0∙10–8 This 
work 

SPCE/(CB + P[3]A[2]Q) CA 1.0∙10–8–1.0∙10–4 2.0∙10–9 This 

work 

 2,6-dinitrophenol 

PGE/AgNPs/chitosan/SrSnO3 nanocomposite DPV 1.5∙10–6–1.35∙10–5 1.8∙10–7 [66] 

GCE/poly(Congo red) CV 5.0∙10–7–6.5∙10–5 1.0∙10–7 [67] 

GCE/ ZnO-PbO microstructures DPV 3.23∙10–6–1.67∙10–5 2.95∙10–

6 
[68] 

SPCE/(CB + P[3]A[2]Q) CV 1.0∙10–7–1.0∙10–4 5.0∙10–8 This 

work 
SPCE/(CB + P[3]A[2]Q) CA 1.0∙10–8–1.0∙10–4 2.0∙10–9 This 

work 

 2,4,6-trinitrophenol 

Au electrode/carbon quantum dots DPV 5.0∙10–10–5.0∙10–6 3.5∙10–10 [69] 

PGE/MIP/RGO/polypyrrol DPV 1.0∙10–5–1.0∙10–3 1.4∙10–6 [70] 

GCE/1,3,5-benzoletricarboxylic acid/RGO DPV 2.0∙10–7–1.0∙10–5 1.0∙10–7 [71] 

SPCE/(CB + P[3]A[2]Q) CV 1.0∙10–7–1.0∙10–4 5.0∙10–8 This 

work 

SPCE/(CB + P[3]A[2]Q) CA 1.0∙10–8–1.0∙10–4 2.0∙10–9 This 
work 

a GCE – glassy carbon electrode; 
b DPV – differential pulse voltammetry; 
c GO – graphene oxide; 
d RGO – reduced graphene oxide; 
e CV – cyclic voltammetry; 
f CA – chronoamperometry; 
g CPE – carbon paste electrode; 
h NPs – nanoparticles; 
i Cr-MOF – chrome metal-organic framework; 
j MIP – molecularly imprinted polymers. 
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Table 4 Chronoamperometric recovery of m-nitrophenol in a 

model effluent sample. 

Model effluent 

sample 

m-nitrophenol, 

µM Sr 
Recovery, % 

 Added Found  

No dilution 

10 

3.5±0.2 0.045 35±2 

Dilution 1:10 6.7±0.1 0.015 67±1 

Dilution 1:100 9.8±0.1 0.010 98±1 
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