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Abstract 

This study investigates the sorption of 2-methyl orange dye onto octade-
cylamine-modified iron oxide magnetic nanoparticles (ODA-IONPs). The 

synthesized ODA-IONPs exhibit remarkable sorption capacity, reaching 
800 mg/g at the nanoparticle concentrations ranging from 5 to 10 mg/g 
and pH of 2–8. The sorption process demonstrates rapid kinetics, achieving 

90% of maximum sorption within 0.5 min. Thermodynamic analysis 
showed that sorption process is spontaneous and endothermic, as indicated 
by negative ΔG and positive ΔH values. The pseudo-second-order and Lang-

muir models best describe the sorption kinetics at 293 K (R² > 0.99). Com-
pared to other adsorbents, ODA-IONPs show superior MO removal capacity 

under a wider pH range. The influence of nanoparticle concentration, pH, 
and temperature on sorption efficiency is systematically explored, with op-
timal conditions identified at 10 mg/L ODA-IONPs and pH 6. Furthermore, 

the feasibility of nanoparticle reusability for sorption purposes is assessed. 
These findings underscore the potential of ODA-IONPs as efficient sorbents 
for wastewater treatment and environmental remediation applications. 
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Key findings 

● The adsorption capacity of ODA-IONPs was highest at 5 mg/L and 10 mg/L concentrations. 

● The sorption process was spontaneous and endothermic, with negative ∆G values and a positive ∆H value. 

● The pseudo-second-order and Langmuir models best described the dye sorption on ODA-IONPs at 293 K. 
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1. Introduction 

During the process of modern industrial development, the 

usage of colored materials and dyes is indispensable, espe-

cially in industries such as textiles, food, and plastics [1, 2]. 

2-Methyl Orange (MO), a simple and stable dye, is econom-

ically viable and resistant to decomposition under ultravio-

let radiation. It constitutes approximately half of the dyes 

used in the textile industry and finds wide application in 

textile dyeing. However, MO itself is a toxic and harmful 

substance that can cause irritation to the human body. Pro-

longed exposure to MO can potentially lead to reproductive 

system and liver toxicity issues [3,4]. In industrial 

wastewater, if MO is discharged untreated directly into wa-

ter sources and soil, it generates a large amount of sus-

pended dye molecules, severely impacting the transparency 

of water bodies and affecting the life activities of fish, 

plants, and microorganisms. This poses serious threats to 

local ecosystems and food chains. Additionally, MO can be 

released into the air, causing negative impacts on air qual-

ity and atmospheric environment [5–8]. Therefore, it is es-

sential to treat industrial wastewater containing MO before 

its discharge to ensure safety and harmlessness. 
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Currently, methods for treating dye wastewater can be 

categorized into physical, biological, conventional chemi-

cal, and advanced oxidation processes [9]. Among these 

methods, physical processes such as adsorption [10], mem-

brane separation [11], and ion exchange[12] are commonly 

used techniques for treating dye-polluted wastewater [13]. 

Biological processes utilize the metabolic processes of mi-

croorganisms such as bacteria and fungi to decompose or-

ganic pollutants in wastewater and purify the sewage, in-

cluding aerobic biological processes [14], anaerobic biolog-

ical processes [15], and aerobic/anaerobic mixed processes 

[16, 17]. They have advantages such as low cost and large 

treatment range. However, these processes have several 

limitations for environmental treatment, requiring suitable 

temperature, light, pH, and oxygen concentrations. In prac-

tical wastewater treatment, the complex water quality may 

result in insufficient biodegradability and low degradation 

performance for dye-containing wastewater [18]. Conven-

tional chemical processes, such as electrochemical methods 

[19], chemical precipitation [20], redox reactions, and co-

agulation [21, 22] alter the physical or chemical properties 

of pollutants in wastewater to change their forms, causing 

them to precipitate, float, or be partitioned into small mo-

lecular states. However, these methods are often associated 

with high costs, high energy consumption, and the need for 

complex post-treatment processes to avoid secondary pol-

lution of the environment [23]. Advanced oxidation pro-

cesses, which involve reactions under conditions of light 

[24], catalysts, high temperature, and high pressure, can 

degrade pollutants into small molecular substances and pu-

rify wastewater. However, their effectiveness in handling 

pollutants with high organic content is not ideal [25, 26]. 

Adsorption is a physical purification method that uti-

lizes the porous physical properties of adsorbents to adsorb 

organic dyes from wastewater onto the surface or within 

the pores, thereby physically separating them from the 

wastewater. It has such advantages as simplicity, high effi-

ciency, no pollution, and economic viability, making it an 

excellent method for purifying dye wastewater and the op-

timal and comprehensive technique for removing azo dyes 

from water [27]. There are many types of adsorbents avail-

able, among which activated carbon [28, 29], due to its mi-

croporous structure, large surface area, and strong adsorption 

capacity, is widely used. However, it has the drawbacks of high 

production costs and poor recycling performance. Various 

low-cost adsorbents such as alumina [30], zeolite [31, 32], pol-

ymers [33]， activated carbon [34], silica [35], gel chitosan, 

clay materials [36], and agricultural [37] and industrial wastes 

[38, 39] have been extensively employed [40, 41]. However, 

research has shown that these low-cost adsorbents do not pos-

sess sufficient adsorption performance for MO [42, 43]. 

Iron oxide nanoparticles (IONPs), specifically those 

based on γ-Fe2O3 and Fe3O4, have rapidly advanced for sorp-

tion application owing to their magnetic properties, ena-

bling their efficient collection with a magnetic field [44]. 

Their  biocompatibility, ease of preparation, and high ex-

traction efficiency enhance their effectiveness in solid-liq-

uid separation, making them valuable adsorbents for water 

purification and various other applications[45–48]. The 

preparation methods for γ-Fe2O3/Fe3O4 IONPs include co-

precipitation [49–51], microemulsion [52], thermal decom-

position [53], and hydrothermal synthesis [54]. The co-

precipitation method not only stands out for its simplicity 

and efficacy in the synthesis of IONPs but also offers an eco-

friendly advantage by circumventing the use of toxic rea-

gents [55]. 

However, bare IONPs have a tendency to self-aggregate 

and minimize their surface energy. To ensure chemical sta-

bility and uniform particle size of IONPs, protective coat-

ings can be applied to the surface, which effectively in-

creases the surface area-to-volume ratio of the parti-

cles [48, 56, 57]. Surface modification with various mole-

cules, such as propylene glycol, silane coupling agents, cit-

ric acid, and hexadecyltrimethylammonium bromide [58, 

59], can be used to meet different requirements. Moreover, 

different reactive groups, such as epoxy, carbonyl, and car-

boxyl groups, can be introduced onto IONPs through chem-

ical reactions, enabling chemical bonding, π-π stacking, ion 

binding, and hydrogen bonding [60, 61]. 

In this study, the co-precipitation method was used to 

synthesize magnetic IONPs coated with octadecylamine 

(ODA). This ODA-IONPs composite was tested for adsorp-

tion capacity of MO under different conditions, and their 

adsorption kinetics was thoroughly studied to determine 

the optimal parameters and mechanical models for improv-

ing the efficiency of the process. 

2. Experimental 

2.1. Chemicals, materials and equipment 

Iron (III) chloride hexahydrate (FeCl3·6H2O, ≥98%, Len-

Reaktiv), Iron(II) sulfate heptahydrate (FeSO4·7H2O, 

≥98%, LenReaktiv), sodium hydroxide (NaOH, ≥98%, 

Sigma-Aldrich) and octadecylamine (C₁₈H₃₉N, ≥98%,Len-

Reaktiv) were used for the synthesis of the IONPs, MO 

(C14H14N3O3SNa, ≥99%, pure for analysis, LenReaktiv). Ab-

sorption spectra were measured with a spectrophotometer 

SF-2000 (Manufacturer: OKB Spektr, St. Petersburg) in the 

wavelength range from 200 to 800 nm with a scanning step 

of 0.1 nm and a slit width of 1 nm. 

2.2. Nanoparticle preparation 

IONPs were synthesized by co-precipitation method as de-

scribed elsewhere [49–51] with some modifications. Solu-

tions of Fe2+ (10 mL, 10 mmol/L) and Fe3+ (10 mL, 

20 mmol/L) were prepared in distilled water preheated to 

80 °C. Sodium hydroxide solution (30 mmol/L) was then 

incrementally added under vigorous stirring to adjust the 

pH to value within the range of 9.0 to 11.0. The reaction 

mixture was maintained at 80 °C for 2 h with continuous 

stirring. Afterwards, the mixture was allowed to cool to 
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room temperature, and the resultant black precipitate was 

separated using permanent magnets (with the induction of 

magnetic field at surface of about 1.2 T). The precipitate 

was purified by washing twice with distilled water and 

thrice with ethanol. The purified precipitate was resus-

pended in 250 mL of distilled water. Separately, 1 g of ODA 

was dissolved in 250 mL of acetone, and this solution was 

added to the aqueous suspension. The mixture was stirred 

for 24 h at 30 °C, resulting in the synthesis of ODA-modified 

iron oxide (γ-Fe2O3/Fe3O4) nanoparticles (ODA-IONPs).  

As we demonstrated earlier [62], the obtained particles 

were approximately 8 nm in size according to Transmission 

Electron Microscopy (TEM). X-ray Diffraction (XRD) analy-

sis revealed that they possess a spinel ferrite structure typ-

ical for both magnetic iron oxides γ-Fe2O3 and Fe3O4. The 

synthesized particles showed superparamagnetic behavior 

at room temperature with saturation magnetization of ap-

proximately 55 Am²/kg, which is consistent with the expec-

tations for nanoparticles of this size [50, 51]. 

2.3. Sorption study 

2.3.1. Capacity 

To determine the sorption capacity, a solution of ODA-

IONPs (100 mg/l, 5 ml) was added to a MO solution 

(100 mg/l, 5 ml). The pH was adjusted to the desired level 

using hydrochloric acid and sodium hydroxide. Distilled wa-

ter was then added to bring the volume to 50 ml, and the pH 

value was measured again to confirm the acidity. The solu-

tions were placed on a stirrer for 1 h. After this period, the 

optical density of the solution was measured, followed by the 

magnetic separation and filtration steps. The optical density 

was recorded at a wavelength of 469 nm and compared with 

the calibration curve to determine the concentration of MO.  

The static capacity of the adsorbent ODA-IONPs was cal-

culated using the following formula: 

𝑞𝑡 =
(𝐶0 − 𝐶eq)𝑉

𝑚
 

(1) 

where С0 is the initial concentration of the dye, Сeq is the 

equilibrium concentration of the dye, V is the volume of the 

flask, and m is the mass of the sorbent. 

2.3.2. Effect of IONPs concentration on degree of 

 extraction 

The effect of a samples weight was studied in a manner similar 

to the one used for the pH, but using the optimum values of 

acidity, pH 6–8. The weight varied from 50 to 200 mg. The 

degree of extraction was calculated with the formula: 

𝑅 =  
(𝐶0 − 𝐶eq)

𝐶eq
 100%. 

(2) 

2.3.3. Period of sorption 

To assess the period of sorption, distilled water was added 

to a 100 ml flask containing ODA-IONPs solution (100 mg/l, 

10 ml) and MO solution (100 mg/l, 10ml) to the labeled 

mark. The flask was then put on a stirrer. The optical 

density measurements of the solution were taken by col-

lecting 3.5 ml samples after 0.5, 1.5, 3.5, 5, 10, 20, 30, 40, 

50, 60, 90, and 120 min. 

2.3.4. Kinetics of sorption 

The kinetics of MO adsorption on IONPs samples modified 

with ODA was analyzed using pseudo-first-order [63], sec-

ond-order [64], Elovich [65, 66], Weber and Morris model 

[67], Langmuir [68], Freundlich [69], Temkin [70] and Du-

binin–Radushkevich [71] models, which can be expressed in 

linear form as 

ln(𝑞𝑒 − 𝑞𝑡) = ln𝑞𝑒 − 𝑘1𝑡, (3) 

where qe and qt (mg/g) are the amount of adsorbed MO at 

equilibrium and at time t, respectively; k1 is the equilibrium 

rate constant in the pseudo-first-order model (L/min); 

𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

1

𝑞𝑒
𝑡, 

(4) 

where qe is the amount of the dye adsorbed at equilibrium 

(mg/g), and k2 is the equilibrium rate constant of the 

pseudo-second-order model (g/mg min); 

𝑞𝑡 =
1

𝛽
ln(𝛼𝛽) +

1

𝛽
ln𝑡, 

(5) 

where α is the initial adsorption rate and β is the desorption 

constant; 

𝑞𝑡 = 𝑘𝑖𝑡0.5 + 𝐶𝑝, (6) 

𝐶𝑝

𝑞𝑡
=

1

𝑞𝑒𝑘𝐿
+

1

𝑞𝑒
𝐶𝑝, (7) 

ln𝑞𝑡 = ln𝑘𝐹 +
1

𝑛
𝐶𝑝, (8) 

𝑞𝑡 = 𝐵 ln𝑘𝑇 + 𝐵 ln𝐶𝑝, (9) 

ln𝑞𝑡 = ln𝑞𝐷−𝑅 − 𝑘𝐷−𝑅𝜖2, (10) 

where ki, kL, kF, kT, and kD-R, are the intraparticle diffusion 

rates (mg/g min-0.5) according to the Weber and Morris, 

Langmuir, Freundlich, Temkin, Dubinin–Radushkevich 

models, respectively; t, Cp is a constant for any experiment 

(mg/dm3), n is the Freundlich isotherm constant, showing 

the heterogeneity of the surface, B is the constant associ-

ated with the heat of sorption (J/mol), qD-R is the theoretical 

capacity of the sorbent (mol/g); 𝜖 is the Polyani potential. 

3. Results and Discussion 

Figure 1 illustrates the effect of different concentrations 

(0.5–100 mg/l) of ODA-IONPs on the adsorption process of 

10 mg/l MO solution. The adsorption capacity (q) and sep-

aration factor (R) were measured after adsorption for 2 h. 

The q value increased gradually, reaching a maximum of 

768.6 mg/g at a concentration of 5 mg/L, after which it 

gradually decreased. R gradually increased in the range of 
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0–10 mg/l, then decreased in the range of 10–100 mg/l, 

achieving a maximum of 95% at 100 mg/l ODA-IONPs. 

Through comparison and selection of the above results, 

it was found that the q of ODA-IONPs reached its highest 

values at the concentrations of 5 mg/l and 10 mg/l, while R 

was highest at the concentration of 10 mg/l. Therefore, the 

concentration of 10 mg/L is considered to be the optimal ad-

sorption concentration for ODA-IONPs. This concentration 

provides the best balance between high adsorption capacity 

and efficient separation of the MO dye from the solution. 

Figure 2 lists the effects of different PH environments 

on the adsorption of ODA-IONPs. The concentrations of 

ODA-IONPs and MO are both 10 mg/l. At room temperature, 

with the increase of pH value, q and R both increase first 

and then decrease, reaching the highest values at pH ~6.0. 

This phenomenon can be attributed to the behavior of ODA-

IONPs at different concentrations. At low concentrations 

(10 mg/L and below), the ODA-IONPs remain well-dis-

persed without significant agglomeration. However, as the 

concentration increases (20 mg/L and above), the zeta po-

tential decreases, leading to nanoparticle agglomeration. 

This agglomeration reduces the effective surface area avail-

able for interaction with MO molecules. Consequently, the 

contact area between the ODA-IONPs and MO decreases, re-

sulting in a lower sorption capacity of the sorbent. 

Figure 3 shows the effects of different reaction temper-

ature and time on the adsorption q value of ODA-IONPs at 

the reaction temperatures of 293, 303, 313 and 323 K, re-

spectively, while both ODA-IONPs and MO concentrations 

of ODA-IONPs and MO are set at 10 mg/l and a pH of 6.0. 

The q value was observed to increase with time, and higher 

reaction temperatures resulted in higher q values. Com-

pared with the four reaction temperature curves, the q 

value increases greatly from 293 to 303 K, while the three 

curves at 303, 313 and 323 K have little difference. Table 1 

presents the time for reaching the highest q value at the 

four reaction temperatures, as well as the time for reaching 

95% (t95%) and 90% (t90%) of the highest q value. It can be 

seen from the figure that the highest q value at the four re-

action temperatures is reached at 120 min. Within the 

range of 293–313 K, it only takes 0.5 min to reach 90% of 

the highest q value. At 323 K, only 0.5 min is needed to 

achieve 95% of the maximum q value.  

Figure 4 illustrates the effects of different reaction tem-

peratures and time on the adsorption R value of ODA-

IONPs. The trends observed in R values were consistent 

with those for q in Figure 3. As the reaction temperature 

increased, the R value also increased, indicating enhanced 

adsorption efficiency at higher temperatures. 

The Gibbs energy (∆G) values at all indicated tempera-

tures are negative, which indicates the spontaneity of the 

sorption process. With increasing temperature, the ∆G val-

ues become more negative, which indicates an increase in 

the spontaneity of the sorption process with increasing 

temperature. 

Table 1 Temperature dependence of the time to reach different de-

grees of sorption and the amount of adsorbed MO. 

T，K 
t100%, min 

(q, mg/g) 

t95%, min 

(q, mg/g) 

t90%, min 

(q, mg/g) 

293 120 (926.4） 5 (880.0） 0.5 (837.71) 

303 120 (968.6) 5 (920.1) 0.5 (871.70) 

313 120 (959.4) 1.5 (911.4) 0.5 (835.37) 

323 120 (967.8) 0.5(919.4）  

0.5 1 2.5 5 10 20 40 100
0

100

200

300

400

500

600

700

800  q (mg/g)

 R (%)

C, mg/L

q
, 
m

g
/g

10

20

30

40

50

60

70

80

90

100

 R
, 
%

 
Figure 1 Dependence of the sorption and degree of sorption of MO 
on ODA-modified iron oxide magnetic nanoparticles on the differ-

ent concentrations of ODA-IONPs. 
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Figure 2 Dependence of the sorption and degree of sorption of MO 

on ODA-IONPs vs pH. 
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Figure 3 Dependence of degree of sorption of MO on the ODA-

IONPs from time at different temperatures. 
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Figure 4 Dependence of degree of sorption of MO on ODA-IONPs 

on time at different temperatures. 

The positive entropy change (∆S = 164.64 J/(mol·K)) in-

dicates an increase in the entropy of the system during sorp-

tion, likely due to the increased disorder or mobility of dye 

molecules on the surface of nanoparticles. A positive en-

thalpy (∆H = 43.4 kJ/mol) indicates that the sorption process 

is endothermic, requiring the absorption of heat from the en-

vironment. Thus, the process of dye sorption on nanoparti-

cles is spontaneous and endothermic, accompanied by a de-

crease in the entropy of the system. An increase in tempera-

ture contributes to an increase in the spontaneity of the pro-

cess, which manifests itself in more negative ∆G values. 

From the analysis of Table 2, it can be seen that the 

pseudo-second-order and Langmuir models most accurately 

describe the dye sorption on ODA-ONPs at 293 K. These 

models have high coefficients of determination (R2), indi-

cating good agreement with the experimental data. The 

negative values of ∆G by Langmuir model confirm the spon-

taneous nature of the sorption process. The Freundlich, 

Temkin and Dubinin–Radushkevich models also show 

relatively high values of R2, but with some anomalies in the 

parameters, which requires further study. 

3.1. Comparison with other adsorbents 

For further comparison with other various adsorbents, the 

adsorption capacity (qmax; mg/g) of different adsorbents re-

ported in the literature [66, 72, 81, 73–80] are listed in 

Table 3. According to this Table, the adsorption capacities 

of the ODA-IONPs were much higher than those of the re-

ported adsorbents, indicating that the ODA-IONPs have 

important potential for the adsorption MO from aqueous 

solution. Only magnetic hierarchical porous carbon 

spheres have higher capacity, but lower pH range (study 

only for pH 7) [81]. 

4. Limitations 

Difficulties can arise in the determination of dyes at differ-

ent pH because errors occur when determining the concen-

tration at the isosbestic point. Simple and rapid methods 

are needed for the determination of various dyes (including 

MO) in sorption and catalysis studies using CCD spectro-

photometers and chemometric processing, possibly using 

neural networks. 

5. Conclusions 

The investigation into ODA-IONPs reveals their substantial 

potential as sorbents for MO dye, with a maximum capacity 

of 800 mg/g and rapid sorption kinetics with 90% of maxi-

mum sorption achieved within 0.5 min. Thermodynamic 

analysis reveals the process to be spontaneous (ΔG < 0) and 

endothermic (ΔH = 43.4 kJ/mol). The high adsorption capac-

ity, rapid kinetics, and wide pH range (2–8) of ODA-IONPs 

offer significant advantages over conventional adsorbents. 

Table 2 Parameters of kinetics model for sorption of ODA-IONPs of MO. 

Model 
Model  

parameters 

Т, К 

293 303 313 323 

PFO 
k1 8·10−5 8·10−5 8·10−5 8·10−5 

R2 0.576 0.7593 0.8606 0.4605 

PSO 
K2 0.0011 0.001 0.001 0.001 

R2 0.9988 0.9998 0.9999 0.9997 

Langmuir 

R2 0.9951 0.9992 0.9994 0.9998 

KL，l/mol 5.1371 24.1973 19.8059 35.1309 

aMAX，mol/g 0.00225 0.00265 0.00262 0.00273 

∆G, J/mol −3988.54 −8030.57 −7774.09 −9562.07 

Freundlich 

R2
 0.8032 0.9535 0.9697 0.9812 

KF 0.00275 0.00277 0.00276 0.00279 

n −7.752 −15.823 −13.736 −18.315 

Temkin 

R2 0.8084 0.9591 0.9736 0.9829 

KT 0.000123 8.31529·10−7 8.31529·10−7 8.31529·10−7 

B −0.0003 −0.0002 −0.0002 −0.0002 

Dubinin– 

Radushkevich 

R2 0.7672 0.9184 0.9433 0.9669 

KD-R 0.0001 0.00004 0.00005 0.00003 

a, mol/g 0.00222 0.00260 0.00255 0.00265 
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Table 3 Comparison of MO adsorption capacity of ODA-IONPs with that of various adsorbents. 

No. Adsorbent Material R, % qMax, mg/L pH Method of qMax Reference 

1 Fe3O4@SiO2 83 182.5 2 Langmuir [72] 

2 Fe3O4-CTAB ~90 7.6 4−6 Langmuir [73] 

3 Magnetic hierarchical porous carbon spheres 99.9 1522.6 7 Langmuir [81] 

4 

Goethite 

Chitosan beads 
Goethite impregnated with chitosan beads 

91 

94 
96 

55 

73 
84 

3 

3 
3 

Langmuir 

Langmuir 
Langmuir 

[74] 

5 Fe3O4/GO nanocomposite 98 714.3 6 Langmuir [75] 

6 Grapheme oxide 98.2 543.4 5 Langmuir [76] 

7 Fe3O4@MUS composite 85 149.25 3 Langmuir [77] 

8 MWCNTs/Fe3O4/PANI – 544.99 4 Langmuir [78] 

9 Chitosan Bead-like Materials 98.8 12.46 4−6 Langmuir [66] 

10 
Silicate minerals: 
Halloysite nanotubes  

Chrysotile nanotubes  

 
– 

– 

 
13.56 

31.46 

 
7 

7 

 
Langmuir 

Langmuir 

 
[79] 

 

11 [Bi6O5(OH)3](NO3)5 · 3H2O 97 730 6−8 Langmuir [80] 

12 ODA-IONPs 90 880 6 Langmuir This work 

13 ODA-IONPs 80 800 2−8 Langmuir This work 

These properties, combined with their magnetic nature al-

lowing easy separation, position ODA-IONPs as promising 

candidates for large-scale wastewater treatment applica-

tions, particularly in textile and dye industries. Future stud-

ies should explore the scalability of ODA-IONPs synthesis 

and their efficacy against a broader range of pollutants, 

paving the way for comprehensive environmental remedia-

tion strategies. 
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